Problemas de Cinemática 1 o Bachillerato
- Alberto Espejo Camacho
- hace 3 años
- Vistas:
Transcripción
1 Problemas de Cinemática 1 o Bachillerato 1. Sean los vectores a = i y b = i 5 j. Demostrar que a + b = a + b a b cos ϕ donde ϕ es el ángulo que forma el vector b con el eje X.. Una barca, que lleva una velocidad de m/s, cruza un río perpendicularmente a la dirección del agua. El río fluye a 5 m/s y su cauce tiene 60 metros de ancho. Hallar el ángulo y la distancia desviada. Determina la velocidad resultante y el tiempo empleado en cruzar el río.. El vector de posición de un cuerpo viene dado por r = (t + t + 1) i + (1 t) j a) Obtener la ecuación de la trayectoria; b) La velocidad media entre los instantes t 1 = s y t = 4 s; c) Velocidad y aceleración instantáneas en t = s. 4. Un avión ha de alcanzar 50 km/h para despegar partiendo desde el reposo. Si necesita una pista de km para despegar, calcula cuánto tiempo le costará despegar. Qué distancia recorrerá en el último segundo? 5. Desde el suelo lanzamos hacia arriba un cuerpo a 4 m/s. Calcular: a) altura máxima alcanzada y tiempo empleado en alcanzarla; b) el tiempo total de vuelo; c) Una vez en el punto más alto el cuerpo vuelve a caer y se queda encalado a 0 metros del suelo. Halla la velocidad justo antes de encalarse.
2 Resolución de los problemas Problema 1 Vamos a hallarlo por partes. Como se trata de una igualdad, calcularemos primero el miembro de la izquierda y luego el de la derecha y comprobaremos que dan lo mismo. En la parte de la izquierda tenemos a + b. Empecemos por hallar a + b y luego su módulo a + b = (, 0) + (, 5) = ( 1, 5) y su módulo a + b = ( 1) + ( 5) = 6 de donde a + b = 6 (1) En la parte de la derecha tenemos a + b a b cos ϕ. Vamos a determinar cada uno de ellos. a = ( ) + 0 = b = + ( 5) = luego a = b = Ahora queda por saber lo que vale cos ϕ, el ángulo que forma el vector b con el eje X. La siguiente figura muestra como hallarlo. El coseno de un ángulo es igual al cateto contiguo dividido por la hipotenusa, siendo la hipotenusa por definición b. ϕ 5 Como vemos pues en la figura cos ϕ = Ahora ya estamos en condiciones de sustituir todo en a + b a b cos ϕ, quedando a + b a b cos ϕ = + resultado que coincide con la ecuación 1. = + 1 = 6 Problema Conviene hacer un dibujo para aclarar la posición del sistema de referencia o de nuestros ejes coordenados.
3 El origen del sistema de referencia lo tomamos en la barca. El eje X a lo largo del río y el eje Y perpendicular y según la dirección que lleva la barca. Con esta elección las componentes de los vectores velocidad es muy fácil. El vector velocidad del río forma un ángulo de 0 o y el vector velocidad de la barca 0 o. Las componentes las hallamos con las expresiones para el paso de componentes polares a cartesianas, v = (v x, v y ) = (v r cos ϕ, v r sin ϕ) Para el vector velocidad del río tendremos v r = (5 cos 0, 5 sin 0) = (5 1, 5 0) = (5, 0) m/s Y para la barca cuya dirección forma 0 o v b = (v b cos ϕ, v b sin ϕ) = ( cos 0, sin 0) = ( 0, 1) = (0, ) m/s La velocidad resultante será pues la suma vectorial de la velocidad del río y de la barca, v resultante = v rio + v barca = (5, 0) + (0, ) = (5, ) m/s Y su módulo v resultante = 5 + = 5 + = 4 = 5, 8 m/s. Para calcular el ángulo desviado, si nos fijamos en el dibujo anterior, se trata de determinar el ángulo ϕ. A partir del triángulo que forman los vectores velocidad podemos calcular el valor de tan ϕ. tan ϕ = v rio v barca = 5 = 1, 66.. por lo tanto ϕ = tan 1 ( ) 5 = 5, 0 o Así pues el ángulo que se desvía la barca de su trayectoria inicial es 5,0 o Para saber la distancia que se desvía la barca respecto de la otra orilla, al ser las velocidades constantes tenemos v = e t y entonces e = v t
4 donde v es ahora la velocidad resultante. El vector e representa a las distancias que recorre la barca a lo largo de los ejes X e Y. e = (x, y) = v t = (5, ) t En la ecuación anterior podemos identificar lo que valen las distancias x e y x = 5 t y = t De acuerdo con la figura del principio del problema la distancia y la podemos identificar con la anchura del río y con ella averiguar el tiempo empleado por la barca en cruzar el río, 60 = t y despejando el tiempo t = 60 = 0 segundos La distancia desviada respecto de la otra orilla vendrá dada por x, que por lo dicho antes es x = 5 t = 5 0 = 100 metros Problema a) Para la ecuación de la trayectoria hemos de identificar lo que es la componente X e Y, que a partir de lo que vale r son r = (x, y) = (t + t + 1, 1 t) obteniendo el siguiente sistema de ecuaciones { x = t + t + 1 y = 1 t en el que hay que eliminar t. Parece más fácil despejar t de la segunda de ellas y sustituir en la primera. (Recordamos que el procedimiento siempre es igual, se despeja en una de ellas y se sustituye siempre en la otra). t = y 1 = y 1 = y + 1 y sustiyendo en la primera ( ) 1 y x = t + t + 1 = + 1 y + 1 = 1 + y y + 1 y operando + 1 = 1 + y y + (1 y) + 4 = 1 y (1 y) + 1 y + 1 = 1 + y y + y +
5 llegamos por fin a x = y 5y + 1 La ecuación obtenida expresa x en función de y en este caso y corresponde a la ecuación de una parábola. b) Para la velocidad media partimos de su definición v m = r t = r r 1 t t 1 donde r 1 y r son los valores del vector de posición en los instantes t 1 = s y t =4 s que nos dan en el problema. Sustituyéndolos y la velocidad media será v m = r r 1 = t t 1 r = ( , 1 4) = (1, 11) r 1 = ( + + 1, 1 ) = (7, 5) (1, 11) (7, 5) 4 = (1 7, 11 ( 5)) = (14, 6) = (7, ) siendo sus unidades m/s. c) La velocidad y aceleraciones instantáneas las hallamos haciendo las derivadas del vector de posición. Para la velocidad y para t= s Por fin para la aceleración v = d r dt = d dt (t + t + 1, 1 t) = (t + 1, ) v = ( + 1, ) = (7, ) m/s a = d v dt = d (t + 1, ) = (, 0) m/s dt La aceleración obtenida es constante e independiente por tanto del tiempo. Problema 4 Se trata de un movimiento rectilíneo uniformemente acelerado (MRUA). Las fórmulas son e = e 0 + v 0 t + 1 a t v = v 0 + a t v = v 0 + a (e e 0 ) 5
6 De la lectura del problema se decuce que v 0 = 0 y v=50 km/h=7, m/s, e 0 =0 y e= km=000 m. Nos piden el tiempo y lo podemos calcular con la primera o segunda de las ecuaciones anteriores, pero para ello hemos de calcular la aceleración, que la despejamos de la tercera, a = v v 0 (e e 0 ) = (7, ) 0 =, 6 m/s (000 0) y con la segunda sabemos el tiempo t = v v 0 a = 7, 0, 6 = 41, 15 s Para hallar la distancia recorrida en el último segundo, sabemos por lo hecho antes que para t=41,15 s el espacio es obviamente, e=000 m, luego para 1 segundo antes el espacio que llevará recorrido será con el tiempo t = =40,15 s. Con la fórmula del espacio, la primera de las tres e = e 0 + v 0 t + 1 a t = , , 6 (40, 15) = 10, 18 m y en el último segundo habrá recorrido la diferencia entre e y e e e = , 18 = 7, 8 m Los valores numéricos pueden difererir ligeramente según los decimales que se usen en el cálculo. 6
7 Problema 5 Las fórmulas son las mismas que antes pero ahora poniendo la aceleración de la gravedad, g =, 8 m/s, y el espacio es ahora la altura h. Del problema deducimos h 0 =0, v 0 =4 m/s. h = h 0 + v 0 t + 1 g t v = v 0 + g t v = v 0 + g (h h 0 ) a) En el punto más alto la velocidad final es nula, v=0, luego de la tercera ecuación podemos despejar la altura final sustituyendo v = v 0 + g (h h 0 ), h h 0 = v v 0, h = h 0 + v v 0 g g h = (, 8) = 576 1, 6 =, 8 m b) Para calcular el tiempo total de vuelo hemos de tener en cuenta que el espacio inicial y final son nulos, ya que sale y vuelve al suelo. Podemos usar la primera ecuación, con lo que nos quedará una ecuación de segundo grado para la t, ecuación fácil de resolver ya que no tiene término independiente y puede factorizarse. h = h 0 + v 0 t + 1 g t 0 = t + 1 (, 8) t, 0 = 4t 4, t 0 = t (4 4, t) cuyas soluciones son t = 0 y 0 = 4 4, t, t = 4 = 4, 8 s 4, c) Todo consiste en hallar la velocidad que tendrá el cuerpo a 0 m del suelo. Tomando como condiciones iniciales las del principio y usando la tercera ecuación, ahora tenemos h 0 =0, h=0 m y v 0 =4 m/s v = 4 + (, 8) (0 0) = 576 = 184 v = 184 = ±1, 56 m/s Sólo basta puntualizar que de la velocidad obtenida anteriormente hemos de quedarnos con la negativa ya que el cuerpo baja. 7
3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada?
Problemas de Cinemática 1 o Bachillerato Caída libre y tiro horizontal 1. Desde un puente se tira hacia arriba una piedra con una velocidad inicial de 6 m/s. Calcula: a) Hasta qué altura se eleva la piedra;
EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo
EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo 1. El vector posición de un punto, en función del tiempo, viene dado
Ejercicios resueltos de cinemática
Ejercicios resueltos de cinemática 1) Un cuerpo situado 50 metros por debajo del origen, se mueve verticalmente con velocidad inicial de 20 m/s, siendo la aceleración de la gravedad g = 9,8 m/s 2. a) Escribe
Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA.
Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Actividades Unidad 4. Nos encontramos en el interior de un tren esperando a que comience el viaje. Por la
Problemas de Física 1 o Bachillerato
Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte
A continuación voy a colocar las fuerzas que intervienen en nuestro problema.
ísica EL PLANO INCLINADO Supongamos que tenemos un plano inclinado. Sobre él colocamos un cubo, de manera que se deslice sobre la superficie hasta llegar al plano horizontal. Vamos a suponer que tenemos
1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j.
IES ARQUITECTO PEDRO GUMIEL BA1 Física y Química UD 1: Cinemática 1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t t) j. a) Determina los
CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS
CINEMÁTICA II: MRUA PROBLEMAS RESUELTOS PROBLEMA RESUELTO Una persona lanza un objeto desde el suelo verticalmente hacia arriba con velocidad inicial de 0 m/s. Calcula: a) La altura máxima alcanzada. b)
1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o.
Problemas de Cinemática 1 o Bachillerato Tiro parabólico y movimiento circular 1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de
Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)
Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto
Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA
Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro
Ideas básicas sobre movimiento
Ideas básicas sobre movimiento Todos conocemos por experiencia qué es el movimiento. En nuestra vida cotidiana, observamos y realizamos infinidad de movimientos. El desplazamiento de los coches, el caminar
Cajón de Ciencias. Ejercicios resueltos de Movimiento rectilíneo uniforme
Ejercicios resueltos de Movimiento rectilíneo uniforme 1) Pasar de unidades las siguientes velocidades: a) de 36 km/h a m/s b) de 10 m/s a km/h c) de 30 km/min a cm/s d) de 50 m/min a km/h 2) Un móvil
Ejercicios de Trigonometría
Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple
8 GEOMETRÍA ANALÍTICA
8 GEOMETRÍA ANALÍTICA EJERCICIOS PROPUESTOS 8. Las coordenadas de los vértices de un rectángulo son A(, ); B(, 5); C(6, 5), y D(6, ). Halla las coordenadas y representa los vectores AB, BC, CD y DA. Qué
Vectores: Producto escalar y vectorial
Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con
CINEMÁTICA DEL PUNTO MATERIAL. ELEMENTOS Y MAGNITUDES DEL MOVIMIENTO
CINEMÁTICA DEL PUNTO MATERIAL. ELEMENTOS Y MAGNITUDES DEL MOVIMIENTO Estudiar el movimiento es importante: es el fenómeno más corriente y fácil de observar en la Naturaleza. Todo el Universo está en constante
un coche está parado en un semáforo implica v 0 =0.
TEMA 1 CINEMÁTICA DE LA PARTÍCULA CONSEJOS PREVIOS A LA RESOLUCIÓN DE PROBLEMAS Movimiento con aceleración constante Al abordar un problema debes fijar el origen de coordenadas y la dirección positiva.
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental
M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento
RECUERDA: La cinemática, es la ciencia, parte de la física, que se encarga del estudio del movimiento de los cuerpos, tratando de definirlos, clasificarlos y dotarlos de alguna utilidad práctica. El movimiento
Funciones más usuales 1
Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una
Ejercicios resueltos
Ejercicios resueltos Boletín 5 Campo eléctrico Ejercicio 1 La masa de un protón es 1,67 10 7 kg y su carga eléctrica 1,6 10 19 C. Compara la fuerza de repulsión eléctrica entre dos protones situados en
Ejercicios de cinemática
Ejercicios de cinemática 1.- Un ciclista recorre 32,4 km. en una hora. Calcula su rapidez media en m/s. (9 m/s) 2.- La distancia entre dos pueblos es de 12 km. Un ciclista viaja de uno a otro a una rapidez
INTRODUCCION A LA FISICA NEWTONIANA Manuscrito de cátedra
INTRODUCCION A LA FISICA NEWTONIANA Manuscrito de cátedra ADVERTENCIA: manuscrito en estado de preparación muy preliminar, particularmente en lo que respecta a la secuencia temática, orden y terminación
Juan de la Cruz González Férez
Curso 0: Matemáticas y sus Aplicaciones Vectores, Bases y Distancias Aplicaciones Juan de la Cruz González Férez IES Salvador Sandoval Las Torres de Cotillas (Murcia) 2012 Composición de movimientos Los
1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN
1.. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN 1..1. 1..1. Supuesto el vector de posición de un punto en el espacio: r = i-j+4k, la mejor representación de dicho vector de todas las dadas es la: a) A
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que
De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.
3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen
Teoría y Problemas resueltos paso a paso
Departamento de Física y Química 1º Bachillerato Teoría y Problemas resueltos paso a paso Daniel García Velázquez MAGNITUDES. INTRODUCCIÓN AL ANÁLISIS DIMENSIONAL Magnitud es todo aquello que puede ser
Hallar gráfica y analíticamente la resultante de los siguientes desplazamientos: hacia el Noroeste), B. (35 m Sur)
VECTORES: OPERACIONES BÁSICAS Hallar gráfica y analíticamente la resultante de los siguientes desplazamientos: hacia el Noroeste), B (0 m Este 30º Norte) y C (35 m Sur) Solución: I.T.I. 94, I.T.T. 05 A
FUNCIONES CUADRÁTICAS Y RACIONALES
www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro
3.1 DEFINICIÓN. Figura Nº 1. Vector
3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado
Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:
Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.
Ejercicios resueltos
Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético
Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8
Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características
PROBLEMAS DE CINEMÁTICA DE MECANISMOS
TEORÍA DE MÁQUINAS PROBLEMAS DE CINEMÁTICA DE MECANISMOS Antonio Javier Nieto Quijorna Área de Ingeniería Mecánica E.T.S. Ingenieros Industriales Capítulo 1 GRADOS DE LIBERTAD. 1.1. PROBLEMA. En la figura
EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS
EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS 1 DIFICULTAD BAJA 1. Qué magnitud nos mide la rapidez con la que se producen los cambios de posición durante un movimiento? Defínela. La velocidad media.
ESTUDIO DEL MOVIMIENTO.
TEMA 1. CINEMATICA. 4º E.S.O. FÍSICA Y QUÍMICA Página 1 ESTUDIO DEL MOVIMIENTO. MAGNITUD: Es todo aquello que se puede medir. Ejemplos: superficie, presión, fuerza, etc. MAGNITUDES FUNDAMENTALES: Son aquellas
EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO
INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin
La masa es la magnitud física que mide la inercia de los cuerpos: N
Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno
PROBLEMAS RESUELTOS TEMA: 3
PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado
Pregunta Señala tu respuesta 1 A B C D E 2 A B C D E 3 A B C D E 4 A B C D E 5 A B C D E 6 A B C D E 7 A B C D E Tiempo = 90 minutos
XVI OLIMPIADA DE LA FÍSICA- FASE LOCAL- Enero 2005 UNIVERSIDAD DE CASTILLA-LA MANCHA PUNTUACIÓN Apellidos Nombre DNI Centro Población Provincia Fecha Teléfono e-mail Las siete primeras preguntas no es
IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?
IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento
ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos.
ESTATICA: Rama de la física que estudia el equilibrio de los cuerpos. TIPOS DE MAGNITUDES: MAGNITUD ESCALAR: Es una cantidad física que se especifica por un número y una unidad. Ejemplos: La temperatura
LEYES DE LA DINÁMICA Y APLICACIONES
CONTENIDOS. LEYES DE LA DINÁMICA Y APLICACIONES Unidad 14 1.- Cantidad de movimiento. 2.- Primera ley de Newton (ley de la inercia). 3.- Segunda ley de la Dinámica. 4.- Impulso mecánico. 5.- Conservación
E 1 E 2 E 2 E 3 E 4 E 5 2E 4
Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),
Resumen TEMA 3: Cinemática del movimiento plano
TEM 3: Cinemática del movimiento plano Resumen TEM 3: Cinemática del movimiento plano 1. Condiciones del movimiento plano Definición: un sólido rígido se mueve con un movimiento plano si todos sus puntos
Recordando la experiencia
Recordando la experiencia Lanzadera Cohete En el Taller de Cohetes de Agua cada alumno, individualmente o por parejas construisteis un cohete utilizando materiales sencillos y de bajo coste (botellas d
_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano
24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas
3 Estudio de diversos movimientos
3 Estudio de diversos movimientos EJERCICIOS PROPUESTOS 3.1 Un excursionista, de pie ante una montaña, tarda 1,4 s en oír el eco de su voz. Sabiendo que el sonido viaja en el aire a velocidad constante
COLEGIO HISPANO-INGLÉS SEMINARIO DE FÍSICA Y QUÍMICA SIMULACRO.
COLEGIO HISPANO-INGLÉS SIMULACRO. SEMINARIO DE FÍSICA Y QUÍMICA 1.- Las ecuaciones de la trayectoria (componentes cartesianas en función de t de la posición) de una partícula son x=t 2 +2; y = 2t 2-1;
ELEMENTOS DEL MOVIMIENTO
ELEMENTOS DEL MOVIMIENTO Unidad 10 CONTENIDOS.- 1.- Introducción..- Magnitudes escalares vectoriales. 3.- Sistemas de referencia. Concepto de movimiento. 4.- Operaciones con vectores. 5.- Traectoria, posición
Sistemas de vectores deslizantes
Capítulo 1 Sistemas de vectores deslizantes 1.1. Vectores. Álgebra vectorial. En Física, se denomina magnitud fsica (o simplemente, magnitud) a todo aquello que es susceptible de ser cuantificado o medido
Respuestas a las preguntas conceptuales.
Respuestas a las preguntas conceptuales. 1. Respuesta: En general es más extensa la distancia recorrida. La distancia recorrida es una medición que pasa por todos los puntos de una trayectoria, sin embargo
1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.
Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-
CINEMÁTICA I FYQ 1º BAC CC.
www.matyfyq.com Página 1 de 5 Pregunta 1: La posición de una partícula en el plano viene dada por la ecuación vectorial: r(t) = (t 2 4) i + (t + 2) j En unidades del SI calcula: a) La posición de la partícula
VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes.
VECTORES EN EL ESPACIO. Determina el valor de t para que los vectores de coordenadas (,, t), 0, t, t) y(, 2, t) sean linealmente dependientes. Si son linealmente dependientes, uno de ellos, se podrá expresar
PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO
PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO 1) Si la velocidad de una partícula es constante Puede variar su momento angular con el tiempo? S: Si, si varía el valor del vector de posición. 2) Una
EJERCICIOS PROPUESTOS
LOS MOVIMIENTOS ACELERADOS EJERCICIOS PROPUESTOS. Cuando un motorista arranca, se sabe que posee un movimiento acelerado sin necesidad de ver la gráfica s-t ni conocer su trayectoria. Por qué? Porque al
PRIMERA EVALUACIÓN. Física del Nivel Cero A
PRIMERA EVALUACIÓN DE Física del Nivel Cero A Marzo 9 del 2012 VERSION CERO (0) NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 70 puntos, consta de 32 preguntas de opción múltiple
= 4.38 10 0.956h = 11039 h = 11544 m
PAEG UCLM / Septiembre 2014 OPCIÓN A 1. Un satélite de masa 1.08 10 20 kg describe una órbita circular alrededor de un planeta gigante de masa 5.69 10 26 kg. El periodo orbital del satélite es de 32 horas
EJEMPLOS DE CUESTIONES DE EVALUACIÓN
EJEMPLOS DE CUESTIONES DE EVALUACIÓN 1. EL MOVIMIENTO Dirección en Internet: http://www.iesaguilarycano.com/dpto/fyq/cine4/index.htm a 1. Determine el desplazamiento total en cada uno de los casos siguientes
1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.
1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial
Segundo de Bachillerato Geometría en el espacio
Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto
Sistemas de dos ecuaciones lineales con dos incógnitas
Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente
1. CARACTERÍSTICAS DEL MOVIMIENTO.
Tema 6. Cinemática. 1 Tema 6. CINEMÁTICA. 1. CARACTERÍSTICAS DEL MOVIMIENTO. 1.- Indica por qué un motorista que conduce una moto siente viento en su cara aunque el aire esté en calma. (2.R1) 2.- Se ha
TRABAJO Y ENERGÍA Página 1 de 13
TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria
1 EL MOVIMIENTO Y SU DESCRIPCIÓN
EL MOVIMIENTO Y SU DESCRIPCIÓN EJERCICIOS PROPUESTOS. De una persona que duerme se puede decir que está quieta o que se mueve a 06 560 km/h (aproximadamente la velocidad de la Tierra alrededor del Sol).
TEMA: CAMPO ELÉCTRICO
TEMA: CAMPO ELÉCTRICO C-J-06 Una carga puntual de valor Q ocupa la posición (0,0) del plano XY en el vacío. En un punto A del eje X el potencial es V = -120 V, y el campo eléctrico es E = -80 i N/C, siendo
1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:
F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3
EXAMEN TIPO TEST NÚMERO 2 MODELO 1 (Física I curso 2008-09)
EXAMEN TIPO TEST NÚMERO MODELO 1 (Física I curso 008-09) 1.- Un río de orillas rectas y paralelas tiene una anchura de 0.76 km. La corriente del río baja a 4 km/h y es paralela a los márgenes. El barquero
asociados a cada cuerpo de referencia, que sirven para describir el movimiento mecánico de los cuerpos respecto a esos tomados como referencia.
CAP. 4: CINEMÁTICA DE LA PARTÍCULA. Modelo de partícula: se aplica a cuerpos muy pequeños comparados con el diámetro de la menor esfera donde cabe la trayectoria completa del cuerpo. Equivale a considerar
Capitulo 2: Movimientos en 2 y 3 dimensiones
Capitulo 2: Movimientos en 2 3 dimensiones Índice 1. Posicionamiento en mas de una dimensión 2 1.1. Propiedades de Vectores................................. 5 1.2. Componentes de un Vector................................
ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.
ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.
OSCILACIONES ARMÓNICAS
Tema 5 OSCILACIONES ARMÓNICAS 5.1. Introducción. 5.. Movimiento armónico simple (MAS). 5.3. Cinemática y dinámica del MAS. 5.4. Fuerza y energía en el MAS. 5.5. Péndulo simple. MAS y movimiento circular
Lección 7 - Coordenadas rectangulares y gráficas
Lección 7 - Coordenadas rectangulares gráficas Coordenadas rectangulares gráficas Objetivos: Al terminar esta lección podrás usar un sistema de coordenadas rectangulares para identificar puntos en un plano
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre
La curvatura en el periastro y el problema de Kepler The curvature in the periastro and the problem of Kepler
La curvatura en el periastro y el problema de Kepler The curvature in the periastro and the problem of Kepler Campillo IES Ruiz de Alda Isaac Peral s/n 30730 San Javier (Murcia) solivare@fresno.pntic.mec.es
Tema 1. Movimiento de una Partícula
Tema 1. Movimiento de una Partícula CONTENIDOS Rapidez media, velocidad media, velocidad instantánea y velocidad constante. Velocidades relativas sobre una línea recta (paralelas y colineales) Movimiento
1. ESCALARES Y VECTORES
1. ESCLRES Y VECTORES lgunas magnitudes físicas se especifican por completo mediante un solo número acompañado de su unidad, por ejemplo, el tiempo, la temperatura, la masa, la densidad, etc. Estas magnitudes
Vectores en el espacio
Vectores en el espacio Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas
1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j.
1 1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. a) Halla la posición de la partícula para t = 3 s. b) Halla la distancia al origen para t = 3 s. 2. La velocidad
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA AÑO 2014 RECTAS - EJERCICIOS TEÓRICOS 1- Demostrar que la ecuación
Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a
Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición. Se aplica
x y y x 2x y x y x 2y 2 5 x 2y 2 5 EJERCICIOS PROPUESTOS
Solucionario 6 CÓNICAS 6.I. Calcula las ecuaciones de los siguientes lugares geométricos e identifícalos. a) Puntos que equidistan de A(3, 3) y de B(, 5). b) Puntos que equidistan de r: y 0 y s: y 0. c)
UNIDAD EDUCATIVA SALESIANA CARDENAL SPELLMAN
UNIDAD EDUCATIVA SALESIANA CARDENAL SPELLMAN CUESTIONARIO DE OPTATIVA II: FISICA-CÁLCULO DIFERENCIAL TERCERO DE BACHILLERATO (Examen Escrito de Grado) Dr. Eduardo Cadena Cazares 1.- ANALIZAR LA INFORMACIÓN
CÁLCULO PARA LA INGENIERÍA 1
CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!
Para revisarlos ponga cuidado en los paréntesis. No se confunda.
Ejercicios MRUA Para revisarlos ponga cuidado en los paréntesis. No se confunda. 1.- Un cuerpo se mueve, partiendo del reposo, con una aceleración constante de 8 m/s 2. Calcular: a) la velocidad que tiene
Unidad 5 Estudio gráfico de funciones
Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =
TEST SOLUCIONADOS DE FÍSICA, DESDE LA ENSEÑANZA SECUNDARIA HASTA LA UNIVERSIDAD
TEST SOLUCIONADOS DE FÍSICA, DESDE LA ENSEÑANZA SECUNDARIA HASTA LA UNIVERSIDAD 1. CÁLCULO VECTORIAL Y CINEMÁTICA 1.1. Nociones de cálculo vectorial 1.2. Vector de posición, velocidad y aceleración 1.3.
Javier Junquera. Vectores
Javier Junquera Vectores Cómo describir la posición de un punto en el espacio: Sistemas de coordenadas Un sistema de coordenadas que permita especificar posiciones consta de: Un punto de referencia fijo,
Problemas de optimización
Problemas de optimización 1º) La producción de cierta hortaliza en un invernadero (Q(x) en Kg) depende de la temperatura x (ºC) según la expresión. a) Calcula razonadamente cuál es la temperatura óptima
CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS
CINEMÁTICA II: MRUA PROBLEMAS RESUELTOS PROBLEMA RESUELTO Una persona lanza un objeto desde el suelo verticalmente hacia arriba con velocidad inicial de 0 m/s. Calcula: a) La altura máxima alcanzada. b)
Problemas de Campo eléctrico 2º de bachillerato. Física
Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico
CAMPO ELÉCTRICO FCA 10 ANDALUCÍA
CMO LÉCTRICO FC 0 NDLUCÍ. a) xplique la relación entre campo y potencial electrostáticos. b) Una partícula cargada se mueve espontáneamente hacia puntos en los que el potencial electrostático es mayor.
(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura.
Cuestiones 1. Una bola pequeña rueda en el interior de un recipiente cónico de eje vertical y semiángulo α en el vértice A qué altura h sobre el vértice se encontrará la bolita en órbita estable con una
EJERCICIOS RESUELTOS DE CINEMÁTICA. 4º E.S.O. Y 1º DE BACHILLERATO
EJERCICIOS RESUELTOS DE CINEMÁTICA. 4º E.S.O. Y 1º DE BACHILLERATO NOTA DEL PROFESOR: La finalidad de esta colección de ejercicios resueltos consiste en que sepáis resolver las diferentes situaciones que
FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas
1(10) Ejercicio nº 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 Kg si le ha comunicado una velocidad de 90 Km/h? Ejercicio nº 2 Un coche de 1000 Kg aumenta su velocidad
Inversión en el plano
Inversión en el plano Radio de la circunferencia x 2 + y 2 + Ax + By + D = 0 Circunferencia de centro (a, b) y radio r: (x a) 2 + (y b) 2 = r 2. Comparando: x 2 + y 2 2ax 2by + a 2 + b 2 r 2 = 0 con x