TEST DE UNA FIGURA COMPLEJA REY


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEST DE UNA FIGURA COMPLEJA REY"

Transcripción

1 TEST DE UNA FIGURA COMPLEJA REY (Según el método Osterrieth) MATERIAL: La toma del test comporta el material siguiente: - Dos hojas blancas de formato normal (sin reglones ni cuadrículas) - Algunos lápices de colores - Un cronoscopio - Un modelo de la figura a copiar Este modelo aparece ya hecho con la indicación de la orientación en la que hay que colocarlo. TECNICA DE LA PRUEBA: La prueba se toma en dos tiempos: PRIMERO: Una vez instalado el sujeto delante de una mesa, se le presenta el modelo en su posición normal (triángulo isósceles que prolonga el rectángulo a la derecha, con el pequeño rombo hacía abajo), pidiéndole que lo copie, haciéndole comprender que no se trata de una prueba de dibujo.. La copia puede ser aproximadamente en cuanto a los proporciones; lo esencial es no olvidar ninguno de los detalles del modelo. Si se trata de niños se les dice lo siguiente: Ves este dibujo? Vas a tratar de copiarlo lo mejor que puedas, teniendo cuidado de no olvidarte de nada. Se le da al sujeto una hoja y un lápiz de color y comienza su copia. El experimentador sigue el proceso y se limita a cambiarle el lápiz de color en la siguiente forma: se le da una color diferente cada vez que un conjunto quede terminado y se marca en el borde de la hoja el orden de los colores empleados, de manera de poder representarse fácilmente de que manera ha procedido el sujeto (en general bastan 5 ó 6 colores). Se toma el tiempo que dura la copia. Si en el cursote la copia el sujeto cambia ala posición del modelo, hay que volverlo a poner en la posición inicial. El sujeto puede modificar si lo desea, se le pregunta si ha terminado, se anota el tiempo y se le saca la hoja en que ha dibujado. SEGUNDO: Después de una pausa de 3 minutos, durante la cual se debe sacarse de la vista el modelo y la copia, se le da una nueva hoja y un lápiz ordinario y se le pide que ejecute el dibujo de memoria; Se toma el tiempo como la vez anterior y se anota si el segundo proceso gráfico es parecido o no al primero. Una vez que el experimentador está en posesión del dibujo copiado y del dibujo de memoria, la prueba queda terminada; pero se puede preguntarle qué representa el modelo.

2 Advertencia sobre la maneta de consignar el tiempo: Para simplificar la toma del tiempo se lo lleva al minuto superior. En una palabra, todos los dibujos llevan un tiempo solamente en minutos, redondeando los segundos a minutos. EVALUACIÓN NUMÉRICA DE LOS RESULTADOS: Los elementos que se consideran constitutivos del dibujo son los siguientes: 1. La cruz exterior junto al ángulo superior izquierdo del gran rectángulo. 2. El gran rectángulo, armadura de la figura. 3. La cruz de San Andrés formada por las dos diagonales del rectángulo La mediana horizontal del rectángulo La median vertical del rectángulo El rectangulito interior (junto al costado izquierdo del rectángulo2, limitado por las dos semi - diagonales izquierdas de éste y atravesado sobre la mediana) con sus dos diagonales interiores. 7. El pequeño segmento sobre el lado superior horizontal del elemento Las 4 líneas paralelas situadas en el triángulo formado por la semi median superior, el semi lado superior y la semi diagonal superior izquierda de rectángulo El triángulo rectángulo formado por el semi lado superior del rectángulo 2 la prolongación superior de la mediana 5 y el segmento que une la cima de esta prolongación con el ángulo superior derecho del rectángulo La pequeña perpendicular al lado superior del rectángulo 2, situada debajo del elemento El circulo con los tres puntos inscritos situados en sector superior derecho del rectángulo Las cinco rayas paralelas situadas perpendicularmente sobre la diagonal inferior derecha del rectángulo Los dos lados iguales que forman el triángulo isósceles construido sobre el lado derecho del rectángulo, exterior a éste. 14. El pequeño rombo situado en el vértice del triángulo El segmento situado en el triángulo 13, paralelo al lado derecho del rectángulo La prolongación de la mediana horizontal 4, que constituye la altura del triángulo La cruz inferior, comprendida la línea que prolonga la median 5 y la une a ese lado. 18. El cuadrado situado en el vértice inferior izquierdo del rectángulo 2, comprendida la diagonal. Se aplica a los 18 elementos considerados los puntos siguientes: bien colocado: 2 puntos Correcto mal colocado: 1 punto bien colocado: 1 punto mal colocado: ½ punto Por elemento deformado o incompleto Pero reconocible Irreconocible o ausente 0 punto

3 El máximo total de puntos, es por tanto, 36. Manera de proceder o tipo de reproducción. Independientemente de la riqueza o exactitud de las reproducciones, los resultados obtenidos pueden reducirse a los tipos siguientes: Tipo I.- Construcción sobre la armadura: El sujeto comienza su dibujo por el gran rectángulo central que erige en armadura con relación al cual agrupa todos lo otros elementos de la figura. Tipo II.- Detalles englobados en la armadura: El sujeto empieza por uno u otro detalle anexado al gran rectángulo (por ejemplo: la cruz superior izquierda) lo traza el gran rectángulo englobándolo a él uno u otro detalle (por ejemplo, el cuadrado exterior junto al ángulo inferior izquierdo del rectángulo), después acaba la reproducción del rectángulo central, utilizando como armazón de su dibujo, como el Tipo I: se asimila también al Tipo II el proceso raramente encontrado que consiste en dibujar las dos diagonales del rectángulo antes de su contorno. Tipo III.- Contorno general: El sujeto comienza su dibujo por la reproducción del contorno integral de la figura, sin diferenciar explícitamente el rectángulo central. Obtiene así una especie de continente en el cual coloca después los detalles interiores. Tipo IV.- Yuxtaposición de detalles: El sujeto yuxtapone los detalles uno sobre los otros, procediendo como si hiciere un puzzle. No hay elemento director de la reproducción. El conjunto, terminado más o menos bien, es globalmente reconocible y aún puede resultar perfecto. Tipo V.- Detalles sobre fondo confuso: El sujeto produce un grafismo poco o nada estructurado, en el cual no se podría reconocer el modelo, pero donde ciertos detalles de éste, son netamente reconocibles, por lo menos en su intención. Tipo VI.- Reducción a un esquema familiar: El sujeto lleva la figura a un esquema que le es familiar y que puede a veces recordar vagamente la forma general del modelo o ciertos elementos (casa, bote, paz, monigote, etc.) Tipo VII.- Garabato: El sujeto produce un simple garabato en el cual no se pueden reconocer los elementos del modelo ni su forma global. Nota: Se verá más delante de qué manera se pueden utilizar e interpretar los 6 resultados así obtenidos.

4 UTILIZACIÓN PRÁCTICA DEL TEST DE FIGURA COMPLEJA PATA EL DIAGNÓSTICO INDIVIDUAL. A.- COPIA. Correspondencias posibles entre los resultados en cuanto a tipo, puntos y tiempo con su significación posible. Referencias: N = normal: Perecentil 25 a 75 I = Percentil inferiro a 25 S = Percentil superior a 75 Tipo Puntos Tiempo Significación Se encuentra en: N N N Resultado normal Normales y ciertos casos patológicos. N N I Dificultades de ejecución o bradipsiquía, posibilidad de fatiga, de oscilación de la atención; actitud puntillosas. Ciertos normales, ciertos traumatizados N N S Rapidez; sujeto expeditivo y atento Normales N I N Posibilidad de perturbación de la atención; distracción momentánea; indiferencian a la consigna; actitud floja. N I I Perturbación probable de la atención; bradipsiquía; fatigabilidad; actitud particular (ver si hay bizarrrerías). N I S Perturbación posible de la atención; trabajo bloqueado; inatención; tendencia a liberarse de la prueba, rapidez en detrinente de la calidad. Ciertos traumatizados; ciertos normales. Ciertos traumatizados; ciertos esquizofrénicos. Ciertos normales, niños y adultos. N S N Buena atención, cuidado. Normales. N S I Cuidado y atención en detrinente de la rapidez; actitud puntillosa; posibilidad de bradipsiquía. N S S Excelente adaptación a la prueba; vivacidad sin desatención. I N N Poco dotado; sin perturbación de la atención; actitud particular, ineptitud, reacción a la prueba, etc. I N I Ídem; posibilidad de perturbación perceptiva; bradipsiquía; lentitud a causa de mala estructuración. Normales. Normales superiores. Algunos adultos y niños normales. Ciertos traumatizados y ciertos normales.

5 I N S Ídem, con precipitación, búsqueda de originalidad o de método de trazado rápido. I I N Posibilidad de perturbación de la atención, indisociable con posible retraso mental (ver si hay particularidades o bizarrerías). I I I Perturbación del tono mental bradipsiquía que va combinada con atraso o demencia; a veces rebuscamiento pueril; posibilidad de gran esfuerzo de reproducción (ver bizarrerías o particularidades), posibilidades de perturbaciones perceptivas. I I S Rápido pero pobre; debilidad mental y perturbación de la atención, sin esfuerzo neto en el trabajo. I S N Reacción a la prueba, particularidad caracterológica, etc. Inferioridad intelectual a pesar de su buena atención. I S I Ídem, además la posibilidad de rebuscamiento (ver bizarrerías), cuidado exagerado; lentitud debida puede ser a falta de estructuración. Poco dotado, con atención pero lento; esfuerzo. I S S Particularidad tipológica con funcionamiento normal. Raro Ciertos traumatizados; ciertos atrasados; ciertos automatismos mentales. Ciertos traumatizados; esquizofrénicos; seniles; afásicos; débiles mentales Débiles mentales. Raro Raro. Raro; ciertos normales. S N N Bien dotado. Ciertos niños. S N I Lentitud, posibilidad de fatigabilidad en objeto bien dotado. Ciertos normales. S N S Sujeto bien dotado y rápido. Ciertos normales. S I N Bien dotado pero desatento o negligencia probable. Ciertos niños. S I I Probable perturbación de la atención. Raro ciertos normales. S I S Trabajo bloqueado, tendencia a liberarse de la prueba, etc. Ciertos normales. S I S Bien dotado, atento. Ídem. S S I Ídem, pero cuidado, lentitud preciosismo, actitud puntillosa. S S S Sujeto superior, inteligente, atento y rápido. Ídem. Ídem.

6 Evolución del tipo de reproducción. A.- A la copia: Baremos del tipo de reproducción a la copia. EDADES. Percentil 4 años 5-6 años 7-10 años años años Adultos IV I I I I I 75 III II II II I I 50 V IV IV IV - II II I 25 VI II III IV IV II 25-0 VII VI - V VI - V III III IV B.- De memoria: Baremos del tipo de reproducción de memoria. EDADES. Percentil 4 años 5-6 años 7-10 años años 13 - Adultos II II I I I 75 II IV II I I 50 III - V III IV II I 25 VI V III IV II 25-0 VII VI V V - III III - IV Evolución del número de puntos obtenidos. A.- A la copia:

7 EDADES. Percentiles Adultos B.- De memoria: EDADES. Percentiles Adultos Evolución del tiempo.

8 A.- A la copia: EDADES. Percentiles Adultos B.- De memoria: EDADES. Percentiles Adultos

9

10

11

12

13

TRABAJO PRÁCTICO Nº 6 NEUROPSICOLOGÍA DE LAS FUNCIONES VISUOESPACIALES: Test de copia y reproducción de memoria de figuras geométricas complejas

TRABAJO PRÁCTICO Nº 6 NEUROPSICOLOGÍA DE LAS FUNCIONES VISUOESPACIALES: Test de copia y reproducción de memoria de figuras geométricas complejas UNIVERSIDAD NACIONAL DEL COMAHUE FACULTAD DE CIENCIAS DE LA EDUCACIÓN CARRERA: PSICOLOGÍA ASIGNATURA: NEUROPSICOLOGÍA. TRABAJO PRÁCTICO Nº 6 NEUROPSICOLOGÍA DE LAS FUNCIONES VISUOESPACIALES: Test de copia

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES GENERALES Y CALIFICACIÓN Después

Más detalles

A RG. Diédrico 13. Abatimientos Hoja 1/2

A RG. Diédrico 13. Abatimientos Hoja 1/2 menor cota, es horizontal; 2 - El otro vértice, él E, contiguo al A esta en el P; 3 - El pentágono está en el 1º A G R F 2 A 2 F 1 E B 1 2 A LA D 1 0 1 B 1LB 0 menor cota, es horizontal; 2 - El otro vértice,

Más detalles

Matemática. Conociendo unidades de medida. Cuaderno de Trabajo. Básico

Matemática. Conociendo unidades de medida. Cuaderno de Trabajo. Básico Cuaderno de Trabajo Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales multigrado 5 Básico Cuaderno de trabajo Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales

Más detalles

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones

IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS Nombre: Grado: 9 5 1. Costrucciones 2. las rectas y puntos notables de un triángulo Sabemos que los polígonos son figuras cerradas planas, de lados rectos,

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo La circunferencia y el círculo 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA:

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

La carrera geométrica

La carrera geométrica La carrera geométrica Materiales: el tablero 1, un personaje por cada jugador y un dado. 1. Cada jugador ubica su ficha en la salida. 2. Por turno, cada jugador tira el dado y mueve su ficha tantos casilleros

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

ACTIVIDADES PROPUESTAS

ACTIVIDADES PROPUESTAS GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 250

13Soluciones a los ejercicios y problemas PÁGINA 250 PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 5 dm b) 8 8 cm P 5 4 0

Más detalles

MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO

MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO Conociendo las Formas de 2 dimensiones (2D) CLASE 3 CUADERNO DE TRABAJO Cuaderno de Trabajo,

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 2.004-2.005 - CONVOCATORIA: DIBUJO TÉCNICO EL ALUMNO DEBE ELEGIR Y DESARROLLAR, OBLIGATORIAMENTE, LOS EJERCICIOS DEL BLOQUE I ó LOS DEL BLOQUE II. BLOQUE

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm 2 cm 5 cm 8 cm 2 a) b) 5 m 8 m 17 m 15 m 3 a) b) 5

Más detalles

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS

GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS Un punto se nombra con letras mayúsculas: A, B, C Una recta, formada por infinitos puntos, se nombra con letras minúsculas: a, b, c Dos rectas pueden ser paralelas, secantes o coincidentes. 1. Paralelas

Más detalles

1 Ángulos en las figuras planas

1 Ángulos en las figuras planas Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis

Más detalles

26.º OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA CUARTA RONDA DEPARTAMENTAL NIVEL 1 13 de setiembre de 2014

26.º OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA CUARTA RONDA DEPARTAMENTAL NIVEL 1 13 de setiembre de 2014 CUARTA RONDA DEPARTAMENTAL NIVEL 1 Nombre y Apellido:............................................... Colegio:............................. Grado:...... Sección:..... Ciudad:................................

Más detalles

INDICE Objetivo General Capitulo I 1. Determinar el Proceso de Evolución del Dibujo Técnico y su Importancia como Medio de Comunicación

INDICE Objetivo General Capitulo I 1. Determinar el Proceso de Evolución del Dibujo Técnico y su Importancia como Medio de Comunicación INDICE Objetivo General Capitulo I 1. Determinar el Proceso de Evolución del Dibujo Técnico y su Importancia como Medio de Comunicación 1.1. Describir la Evolución del Dibujo Técnico como medio de Comunicación

Más detalles

MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO JUNIO

MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO JUNIO PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 2015 2016 MATERIA: DIBUJO TÉCNICO II (2) Convocatoria: JUNIO EL ALUMNO DEBE ELEGIR Y DESARROLLAR, OBLIGATORIAMENTE,

Más detalles

POLÍGONOS

POLÍGONOS POLÍGONOS 8.1.1 8.1.5 Después de estudiar los triángulos y los cuadriláteros, los alumnos ahora amplían su estudio a todos los polígonos. Un polígono es una figura bidimensional, cerrada, formada por tres

Más detalles

TALLER de GEOPLANO Construcción de un Geoplano Introducción

TALLER de GEOPLANO Construcción de un Geoplano Introducción TALLER de GEOPLANO 1.1. Introducción El geoplano es un recurso didáctico para la introducción de gran parte de los conceptos geométricos; el carácter manipulativo de éste permite a los niños una mayor

Más detalles

Grupo: 3º ESO B Matemáticas en Red

Grupo: 3º ESO B Matemáticas en Red CUADERNO DE TRABAJO 4: TRIÁNGULOS ACTIVIDAD 4.1. MEDIANAS DE UN TRIÁNGULO. BARICENTRO Dibuja un triángulo ABC. Puedes utilizar la herramienta Exponer/Ocultarr rótulo para visualizar los nombres de los

Más detalles

Título de la lámina 1-

Título de la lámina 1- pellido pellido, Nombre 1- Empleando la escuadra y el cartabón rellena los tres espacios a continuación con paralelas a las direcciones dadas. Procura que la distancia entre las paralelas sea la misma

Más detalles

Matemática. Conociendo unidades de medida. Cuaderno de Trabajo. Clase 5

Matemática. Conociendo unidades de medida. Cuaderno de Trabajo. Clase 5 Cuaderno de Trabajo Clase 5 Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales multigrado Cuaderno de trabajo Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales

Más detalles

Unidad 11. Figuras planas

Unidad 11. Figuras planas Unidad 11. Figuras planas Matemáticas Múltiplo 1.º ESO / Resumen Unidad 11 FIGURS LNS OLÍGONOS IRUNFERENI SIMETRÍ Elementos onstrucción lasificación Según el número de lados óncavos y convexos Regulares

Más detalles

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS:

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: Un polígono es un figura cerrada formada por segmentos de recta que no se

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental Recuerda lo fundamental Curso:... Fecha:... RECTS Y ÁNGULOS RECTS INTERESNTES La mediatriz de un segmento es una recta perpendicular al... en su... Cada punto P de la mediatriz de un segmento equidista

Más detalles

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean

Más detalles

MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO

MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO Conociendo unidades de medida CLASE 7 CUADERNO DE TRABAJO Cuaderno de Trabajo, Matemática

Más detalles

Cuadriláteros y circunferencia

Cuadriláteros y circunferencia CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C

Más detalles

Además del grado, para medir la amplitud de los ángulos usamos los minutos y los segundos.

Además del grado, para medir la amplitud de los ángulos usamos los minutos y los segundos. 0 Los ángulos La medida de los ángulos Completa las siguientes oraciones. La unidad de medida de la amplitud de los ángulos es el grado. Su símbolo es. Además del grado, para medir la amplitud de los ángulos

Más detalles

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo

Más detalles

Geometria Analítica Laboratorio #1 Sistemas de Coordenadas

Geometria Analítica Laboratorio #1 Sistemas de Coordenadas 1. Verificar las identidades siguientes: 1) P (3, 3), Q( 1, 3), R(4, 0) Laboratorio #1 Sistemas de Coordenadas 2) O( 10, 2), P ( 6, 3), Q( 5, 1) 2. Demuestre que los puntos dados forman un triángulo isósceles.

Más detalles

ACTIVIDADES. b. Completa la actividad haciendo lo mismo para los vértices restantes. Qué observas?

ACTIVIDADES. b. Completa la actividad haciendo lo mismo para los vértices restantes. Qué observas? ACADEMIA SABATINA RECTAS Y PUNTOS DEL TRIÁNGULO ACTIVIDADES 1. Materiales: triángulos de papel, regla y compás. a. Toma un triángulo cualquiera, escoge uno de sus vértices y haz un doblez de tal modo que

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.

Más detalles

MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO

MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO Conociendo unidades de medida CLASE 5 CUADERNO DE TRABAJO Cuaderno de Trabajo, Matemática

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASE GENERAL Y ESPECÍFICA OPCIÓN A

PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASE GENERAL Y ESPECÍFICA OPCIÓN A PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASE GENERAL Y ESPECÍFICA CURSO 2013-2014 CONVOCATORIA: JULIO MATERIA: DIBUJO TÉCNICO EL ALUMNO DEBE ELEGIR Y DESARROLLAR, OBLIGATORIAMENTE, LOS

Más detalles

Tema 5 Proporcionalidad y escalas

Tema 5 Proporcionalidad y escalas Tema 5 Proporcionalidad y escalas Tema 5 Proporcionalidad y escalas...1 Proporcionalidad... 2 Razón...2 Proporción...2 Proporcionalidad directa...2 Proporcionalidad inversa...3 Construcción de la media

Más detalles

ESTUDIO GEOMÉTRICO SOBRE EL TRIÁNGULO

ESTUDIO GEOMÉTRICO SOBRE EL TRIÁNGULO ESTUDIO GEOMÉTRICO SOBRE EL TRIÁNGULO 1. EL TRIÁNGULO COMO POLÍGONO Debemos comenzar el estudio geométrico del triángulo considerándolo como el más sencillo de los polígonos. Así, vamos a considerar algunas

Más detalles

Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360

Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360 Triángulos Es un polígono formado por tres segmentos cuyos tres puntos de intersección no están en línea recta. Triángulo ABC A,B y C son vértices del triángulo α, β, γ s interiores. a, b y c, longitud

Más detalles

UoL: La geometría del triángulo; figuras, formas y representaciones de objetos LO: Caracterización de los números figurados

UoL: La geometría del triángulo; figuras, formas y representaciones de objetos LO: Caracterización de los números figurados Subject Matemáticas Grade 8 UoL4 El triángulo: un polígono con propiedades especiales Title of LO3 Identificación de los puntos y las líneas notables del triángulo de Grado: 7 aprendizaje relacionado (pre

Más detalles

Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes. Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA

Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes. Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA 1. 2. 3. 4. 5. 6. Educación Plástica y Visual de 1º de ESO Página 48 Ejercicio 5.1 Los polígonos

Más detalles

DEPARTAMENTO DE MATEMATICAS

DEPARTAMENTO DE MATEMATICAS 1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un

Más detalles

1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior?

1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior? Pág. 1 Figuras semejantes 1 uáles de estas figuras son semejantes? uál es la razón de semejanza? F 1 F 2 F 3 2 a) Son semejantes los triángulos interior y eterior? b) uántas unidades medirán los catetos

Más detalles

*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio.

*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x a, y b ). Q(x a, y b ) 2 b + ya yb d= ( ) ( ) 2 x a x *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *ALTURA: perpendicular bajada del vértice al

Más detalles

Triángulos IES BELLAVISTA

Triángulos IES BELLAVISTA Triángulos IES BELLAVISTA Definiciones y notación Un triángulo es la figura plana limitada por tres rectas que se cortan dos a dos. Los puntos de corte se denominan vértices. El triángulo tiene tres lados

Más detalles

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS. EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se

Más detalles

Matemáticas Grado 4 Identificar, describir y clasificar objetos bidimensionales y tridimensionales

Matemáticas Grado 4 Identificar, describir y clasificar objetos bidimensionales y tridimensionales Matemáticas Grado 4 Identificar, describir y clasificar objetos bidimensionales y tridimensionales Estimado padre o tutor legal: Actualmente su hijo/a está aprendiendo a identificar, describir y clasificar

Más detalles

Los Elementos. Libro I 2 Los fundamentos de la Geometría Teoría de los triángulos, paralelas y el Teorema de Pitágoras.

Los Elementos. Libro I 2 Los fundamentos de la Geometría Teoría de los triángulos, paralelas y el Teorema de Pitágoras. Los Elementos Está obra está compuesta por trece libros. El Libro I trata congruencia, paralelas y el teorema de Pitágoras, y en el se incluyen las definiciones de los conceptos, nociones comunes y postulados

Más detalles

, calcule el área del triángulo ABN.

, calcule el área del triángulo ABN. Universidad Peruana de iencias plicadas (UP) Perímetros y Áreas ompuestas 1. alcule el área de un triángulo isósceles si el ángulo desigual mide 30º y los lados iguales miden 8m. 30º 8 m 8 m. alcule el

Más detalles

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II Unidad 1: Percibimos y representamos los objetos 1.- Descripción de las figuras geométricas en el plano. Clasificación de triángulos y cuadriláteros.

Más detalles

DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS

DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS 1.1.1 1.1.2 Las figuras geométricas, como los polígonos, aparecen en muchos lugares. En estas lecciones, los alumnos estudiarán más atentamente los polígonos y

Más detalles

U NIDAD 4. Escalas en mapas y planos. Porcentaje. 1. Un plano a escala TEMA 1: ESCALAS

U NIDAD 4. Escalas en mapas y planos. Porcentaje. 1. Un plano a escala TEMA 1: ESCALAS U NIDAD 4 Escalas en mapas y planos. Porcentaje Cuando trabajaste sobre proporcionalidad en la unidad 2 estudiaste cómo caracterizar las correspondencias de proporcionalidad directa. En esta unidad vas

Más detalles

Dibujar un rombo de diagonal BD y lado AB dados. Se dibuja la diagonal DB y se trazan arcos con centro en sus extremos y radio AB, para hallar A y C.

Dibujar un rombo de diagonal BD y lado AB dados. Se dibuja la diagonal DB y se trazan arcos con centro en sus extremos y radio AB, para hallar A y C. Algunos problemas de cuadriláteros Propiedades Para la resolución de problemas de cuadriláteros es necesario conocer algunas de sus propiedades : - Las diagonales de un paralelogramo se cortan en sus respectivos

Más detalles

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS

Más detalles

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS UNIDAD DIDÁCTICA CUERPOS GEOMÉTRICOS 1. CUERPOS GEOMÉTRICOS En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos

Más detalles

ÁREAS DE FIGURAS PLANAS

ÁREAS DE FIGURAS PLANAS 6. ÁREAS DE FIGURAS PLANAS EN ESTA UNIDAD VAS A APRENDER ÁREAS POLÍGONOS RECTÁNGULO CUADRADO PARALELOGRAMO TRIÁNGULO TRAPECIO ROMBO POLÍGONO IRREGULAR FÓRMULA RESOLUCIÓN DE PROBLEMAS CÍRCULO FÓRMULA FIGURAS

Más detalles

ángulo agudo ángulo agudo triángulo acutángulo triángulo acutángulo ángulo ángulo Nombre Ángulo que es menor que un ángulo recto

ángulo agudo ángulo agudo triángulo acutángulo triángulo acutángulo ángulo ángulo Nombre Ángulo que es menor que un ángulo recto Tarjetas de vocabulario ángulo agudo ángulo agudo Ángulo que es menor que un ángulo recto acutángulo acutángulo Un con tres ángulos agudos ángulo ángulo Una figura formada por dos semirrectas que tienen

Más detalles

INSTITUTO RAÚL SCALABRINI ORTIZ CUADRILATERO

INSTITUTO RAÚL SCALABRINI ORTIZ CUADRILATERO CUADRILATERO INTRODUCCION Son polígonos de 4 lados. La suma de los ángulos interiores es igual a 360º y la suma de los ángulos exteriores es igual a 360º. Vértices : A, B, C, D Lados : a, b, c, d Ángulos

Más detalles

Compartir Saberes. Guía para maestro. Líneas Notables. Guía realizada por Bella Peralta Profesional en Matemáticas.

Compartir Saberes. Guía para maestro. Líneas Notables. Guía realizada por Bella Peralta Profesional en Matemáticas. Guía para maestro Guía realizada por Bella Peralta Profesional en Matemáticas Las líneas y puntos notables de un triángulo es uno de los contenidos matemáticos que le permiten la estudiante profundizar

Más detalles

Click para ir al sitio web:

Click para ir al sitio web: New Jersey Center for Teaching and Learning Iniciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial de estudiantes y profesores.

Más detalles

Geometría del espacio

Geometría del espacio Áreas y volumenes de cuerpos geométricos Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los elementos de un poliedro son: Caras del poliedro: son los polígonos que lo

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 246 REFLEXIONA En la inauguración de la Casa de la Cultura observamos, entre otras, las siguientes figuras: Todas ellas son polígonos. Cuáles crees que son regulares? Explica por qué crees

Más detalles

EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS

EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS Colegio Ntra. Sra. de las Escuelas Pías Dpto. de Matemáticas EJERCICIOS DE MATEMÁTICAS 2º E.S.O. TEOREMA DE PITÁGORAS Y DISTANCIAS 1. Un ángulo agudo de un triángulo rectángulo mide la mitad que el otro.

Más detalles

ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia.

ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia. ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de 2012. Circunferencia. Elementos de la circunferencia. El segmento de recta es una cuerda. El segmento de recta es una cuerda que pasa por el centro, por lo tanto

Más detalles

TEMA 2 GEOMETRIA BASICA APLICADA

TEMA 2 GEOMETRIA BASICA APLICADA TEM GEOMETRI SIC PLICD OPERCIONES CON SEGMENTOS.... MEDITRIZ DE UN SEGMENTO.... DIVISION DE UN SEGMENTO EN PRTES IGULES....3 PERPENDICULR UN RECT... 3.4 DIVISION DE UN RCO DE CIRCUNFERENCI EN DOS PRTES

Más detalles

Geometría con GeoGebra

Geometría con GeoGebra Geometría con GeoGebra Geometría con GeoGebra 2 Actividad 1: Para empezar Puesta en marcha del programa Para arrancar el programa, haz doble clic sobre el icono que está en el Escritorio. (si no encuentras

Más detalles

Construimos las casas de los animales

Construimos las casas de los animales Construimos las casas de los animales En esta sesión se espera que los niños y las niñas construyan figuras bidimensionales a partir de instrucciones escritas u orales. Antes de la sesión Consigue todos

Más detalles

PROBLEMAS DE CORTE EUCLIDIANO

PROBLEMAS DE CORTE EUCLIDIANO PROBLEMAS DE CORTE EUCLIDIANO Sugerencias para quien imparte el curso El alumno debe comprender las definiciones de las rectas notables de un triangulo, de tal forma que pueda aplicar lo aprendido en esta

Más detalles

Preguntas Propuestas

Preguntas Propuestas reguntas ropuestas 2 ... olígonos 1. alcule la suma de lados de dos polígonos si se sabe que las sumas de las medidas de sus ángulos interiores difieren en 540º y el número de diagonales del polígono de

Más detalles

Nombre y Apellido:... Puntaje:... Colegio:... Grado:... Teléfono (L B):... Celular: Número de Cédula de Identidad:...

Nombre y Apellido:... Puntaje:... Colegio:... Grado:... Teléfono (L B):... Celular: Número de Cédula de Identidad:... XXII OLIMPIADA NACIONAL DE MATEMÁTICA RONDA REGIONAL 14 DE AGOSTO DE 2010 - NIVEL 1 PEGÁ TU STICKER AQUÍ Nombre y Apellido:............................................ Puntaje:......... Colegio:.......................................................

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

Objeto del informe. ALUMNO 1 Página: 1

Objeto del informe. ALUMNO 1 Página: 1 Nombre: ALUMNO 1 Centro: NOMBRE DEL COLEGIO Curso: 2º E. PRIMARIA Responsable: RESPONSANBLE Localidad: LOCALIDAD Fecha: 21 / julio / 2015 Objeto del informe El presente informe recoge la evaluación psicológica

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

POLÍGONO ÁNGULOS DE UN POLÍGONO CLASIFICACIÓN: La denominación de polígono palabra compuesta de poli, del griego: muchos; y gonos del griego: ángulos

POLÍGONO ÁNGULOS DE UN POLÍGONO CLASIFICACIÓN: La denominación de polígono palabra compuesta de poli, del griego: muchos; y gonos del griego: ángulos POLÍGONO La denominación de polígono palabra compuesta de poli, del griego: muchos; y gonos del griego: ángulos Un polígono es una porción del plano limitada por una línea poligonal cerrada. Los segmentos

Más detalles

b) Trapezoides Asimetricos.-Es un cuadrilátero irregular que no tiene ningún lado paralelo al otro.

b) Trapezoides Asimetricos.-Es un cuadrilátero irregular que no tiene ningún lado paralelo al otro. ROF: JI UIS SS URILTROS URILTROS FIIIÓ.- Son polígonos que tienen cuatro lados, y pueden ser: = + y lementos 1) Vértices: Son los puntos de intersección,, y, de las rectas que forman el cuadrilátero. )

Más detalles

FIGURAS, ÁREAS Y PERÍMETROS

FIGURAS, ÁREAS Y PERÍMETROS FIGURAS, ÁREAS Y PERÍMETROS 05 Identifica propiedades de las figuras geométricas, de área y de perímetro y utiliza modelos con los que representa información matemática. Para hablar de áreas y perímetros,

Más detalles

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO)

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) TEMA 1: REPRESENTACIÓN GRÁFICA 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) Son dos instrumentos de plástico transparente que se suelen usar de forma conjunta. La escuadra tiene forma de triángulo

Más detalles

Precálculo 1 - Ejercicios de Práctica. 1. La pendiente de la línea (o recta) que pasa por los puntos P(2, -1) y Q(0, 3) es:

Precálculo 1 - Ejercicios de Práctica. 1. La pendiente de la línea (o recta) que pasa por los puntos P(2, -1) y Q(0, 3) es: Precálculo 1 - Ejercicios de Práctica 1. La pendiente de la línea (o recta) que pasa por los puntos P(2, -1) y Q(0, 3) es: a. 2 b. 1 c. 0 d. 1 2. La ecuación de la línea (recta) con pendiente 2/5 e intercepto

Más detalles

Perfil. Alzado. Planta. En los tres casos los rayos de proyección son perpendiculares al plano de proyección

Perfil. Alzado. Planta. En los tres casos los rayos de proyección son perpendiculares al plano de proyección Expresión gráfica: Sistemas de representación. El curso pasado dedicamos un tema al estudio de la representación gráfica de objetos de forma técnica. Aprendimos a representar las vistas diédricas de un

Más detalles

Se dan cinco baldosas que rellenan el plano. Deducir de que poligono regular o combinación de regulares salen.

Se dan cinco baldosas que rellenan el plano. Deducir de que poligono regular o combinación de regulares salen. Se dan cinco baldosas que rellenan el plano. educir de que poligono regular o combinación de regulares salen. RG educción geométrica de baldosas. 2008-2009 Se dan cinco baldosas que rellenan el plano.

Más detalles

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos

Más detalles

5.5 LÍNEAS TRIGONOMÉTRICAS

5.5 LÍNEAS TRIGONOMÉTRICAS 5.5 LÍNES TRIGONOMÉTRIS Sea (O, ) una circunferencia con centro en el origen de coordenadas O(0, 0) radio la unidad. Si se construe un ángulo con vértice en el origen sentido positivo podemos obtener las

Más detalles

Introducción. 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales?

Introducción. 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales? EL TRIÁNGULO: Un polígono con propiedades especiales Identificación de los puntos y las líneas notables del triángulo Introducción 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales? Figura

Más detalles

Plan de clase (1/3) a) Los siguientes triángulos son semejantes. Calcula la medida del lado que falta en cada uno, sin medir:

Plan de clase (1/3) a) Los siguientes triángulos son semejantes. Calcula la medida del lado que falta en cada uno, sin medir: Plan de clase (1/3) Escuela: Fecha: Prof. (a): Curso: Matemáticas 9 Eje temático: F. E. y M. Contenido: 9.3.3 Resolución de problemas geométricos mediante el teorema de Tales. Intención didáctica. Que

Más detalles

SECUENCIA DE ENSEÑANZA CONSTRUCCIÓN DE POLÍGONOS REGULARES A PARTIR DE TRIÁNGULOS ISÓSCELES

SECUENCIA DE ENSEÑANZA CONSTRUCCIÓN DE POLÍGONOS REGULARES A PARTIR DE TRIÁNGULOS ISÓSCELES SECUENCIA DE ENSEÑANZA CONSTRUCCIÓN DE POLÍGONOS REGULARES A PARTIR DE TRIÁNGULOS ISÓSCELES Institución Educativa: RIO TAPAJE - EL CHARCO NARIÑO Docente orientador: Ramiro Quezada Guerrero Tutor: Jimmy

Más detalles

MATEMÁTICAS 4. º CURSO UNIDAD 7: DIVISIÓN

MATEMÁTICAS 4. º CURSO UNIDAD 7: DIVISIÓN MATEMÁTICAS 4. º CURSO UNIDAD 7: DIVISIÓN OBJETIVOS Calcular divisiones cuyo divisor es un número dígito. Reconocer si una división es exacta o entera. Conocer y aplicar la relación entre los términos

Más detalles

Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica

Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica Ángulos. DEFINICIÓN FIGURA OBSERVACIONES Ángulo. Es la abertura formada por dos semirrectas unidas en un solo punto llamado vértice. Donde: α = Ángulo O = Vértice OA = Lado inicial OB = Lado terminal Un

Más detalles

CUESTIONES PREVIAS. 1) No lleva altavoces. Lleva instalada una barra de sonido en la parte superior, pero funciona de forma independiente.

CUESTIONES PREVIAS. 1) No lleva altavoces. Lleva instalada una barra de sonido en la parte superior, pero funciona de forma independiente. FUNCIONAMIENTO CUESTIONES PREVIAS 1) No lleva altavoces. Lleva instalada una barra de sonido en la parte superior, pero funciona de forma independiente. 2) El ordenador que controla la pizarra no está

Más detalles

Dirección General del Bachillerato Centro de Estudios de Bachillerato 5/3 José Vasconcelos Calderón

Dirección General del Bachillerato Centro de Estudios de Bachillerato 5/3 José Vasconcelos Calderón 1 Problema 1. os piezas cuadradas y tres piezas rectangulares se acomodan para formar un rompecabezas cuadrado como muestra la figura. Si cada una de las dos piezas cuadradas tiene 72cm de perímetro y

Más detalles

Estrella es la figura obtenida cuando todos los vértices del polígono inicial están conectados.

Estrella es la figura obtenida cuando todos los vértices del polígono inicial están conectados. CONSTRUCCIÓN 1ª A partir de un polígono regular de n lados. Se elige uno de sus vértices y, a partir de él, se trazan segmentos que unen dos vértices no consecutivos. Este trazado se realiza de manera

Más detalles

III: Geometría para maestros. Capitulo 1: Figuras geométricas

III: Geometría para maestros. Capitulo 1: Figuras geométricas III: Geometría para maestros. Capitulo : Figuras geométricas SELECCIÓN DE EJERCICIOS RESUELTOS SITUACIONES INTRODUCTORIAS En un libro de primaria encontramos este enunciado: Dibuja un polígono convexo

Más detalles