TEMA 1. Series de figuras


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 1. Series de figuras"

Transcripción

1 TEMA 1 Series de figuras 1. QUÉ SON LAS SERIES DE FIGURAS? Las series de figuras incompletas constituyen una de las pruebas más clásicas y tradicionales de la evaluación psicológica. Su objetivo es la evaluación del «factor G» o inteligencia general que se considera una capacidad individual cuya manifestación se da en diferentes tipos de situaciones y problemas. Este «factor G» es de gran importancia tanto en actividades teóricas como prácticas y tiene una gran relación con la intuición, la picaresca y el sentido común y sin embargo depende menos de la formación o la cultura individual, por lo que se considera absolutamente necesario para la comprensión de los elementos inherentes a cualquier situación, para la representación mental de las relaciones entre aquellos elementos y para la solución de problemas que cualquier situación genera. Como capacidad o aptitud general se manifiesta, además, en la posibilidad de adaptación a circunstancias y hechos tanto sociales como profesionales. Los ejercicios de series de figuras son por tanto muy utilizados en los exámenes de oposiciones y en los tests de inteligencia general, sobre todo para el ingreso a determinados Cuerpos como los de Administración Local y para algunas Comunidades Autónomas, donde suelen ser un porcentaje considerable de las preguntas de los ejercicios psicotécnicos. Son pruebas que revisten cierta dificultad para el opositor, quizá porque se necesita más abstracción e imaginación que en una serie numérica o alfabética, y porque además en cada elemento de una serie de figuras hay varios componentes que llevan su propia ley independiente del resto. 19

2 Policía Local de Valencia 2. MODELOS DE TESTS DE SERIES DE FIGURAS: TIPOLOGÍA Y REALIZACIÓN Aunque son numerosos los tipos de series de figuras que podemos encontrar los más comunes son los siguientes: Series de figuras de tres filas por tres columnas donde se trata de averiguar un elemento. Series de figuras de una fila en las que se trata de encontrar el último elemento de la serie. Series de figuras de una fila en la que se ha de encontrar un elemento central en la serie. Series de figuras de una fila en la que se ha de encontrar la figura que lógicamente no difiere de las del resto de la serie. Analogías entre dos pares de figuras. Pasamos a continuación a estudiar cada uno de estos tipos Series de figuras de tres filas por tres columnas donde se trata de averiguar un elemento. Ejemplo 1: b) c) Respuesta e) f) La serie de figuras anterior se compone de tres filas y tres columnas en la que se ha de escoger de entre las opciones de respuesta que se señalan debajo, el elemento de la tercera fila y la tercera columna que queda en 20

3 blanco. Debemos tener en cuenta para ello que en la primera fila los elementos son flechas con diferente orientación (hacia la derecha, hacia abajo y hacia la izquierd y diferente color (negro, gris y blanco), la segunda fila está compuesta de triángulos equiláteros y la tercera fila de triángulos isósceles ambas con las mismas características que la primera. La opción de respuesta solución sería por tanto la b) ya que la y la f) quedarían descartadas por no ser triángulos isósceles y todos los elementos de la tercera fila lo son. Descartaríamos asimismo la respuesta e) y la c) ya que en cada fila y columna están presentes los tres colores (blanco, negro y gris), el color que falta por tanto sería el gris. La respuesta quedaría fuera de lugar ya que los elementos a lo largo de la fila rotan sobre sí mismos 90º en sentido de las agujas del reloj. Por tanto las variables que intervienen en este ejemplo serían la forma de la figura (flecha, triángulo equilátero y triángulo isósceles) que se mantiene a lo largo de la fila pero cambia a lo largo de la columna, el color (negro, gris o blanco) que cambia a lo largo de la fila y de la columna y la rotación a lo largo de la fila. Ejemplo 2: b) c) e) f) Respuesta En este caso a diferencia del anterior no interviene el color o la rotación de la figura ya que la columna central se forma superponiendo la primera y tercera columna, la solución entonces sería la c). 21

4 Policía Local de Valencia 2.2. Series de figuras de una fila en la que se trata de encontrar el último elemento Ejemplo 1: b) c) Respuesta En este caso a diferencia del anterior se trata de una serie de figuras de una fila en la que la primera figura gira cada vez 90º en sentido contrario a las agujas del reloj y al mismo tiempo cada vez se añade una línea corta. La respuesta sería entonces la. Las variables que intervienen en este caso son la rotación de la figura y el número de líneas que se añade Series de figuras de una fila en la que se trata de encontrar un elemento central de la serie. Ejemplo b) c) Respuesta En esta serie a diferencia de la anterior la figura que se trata de averiguar está situada en la parte central de la serie, para su resolución, apoyaremos nuestro razonamiento entonces en las dos primeras figuras y en las dos últimas. 22

5 Si observamos se trata de una línea horizontal que se repite en todas las figuras y a esta línea se le añade cada vez una línea vertical que una vez es corta y a la siguiente vez es un poco más larga. De esta forma la respuesta lógica sería la Series de figuras de una fila en la que se ha de encontrar la figura que lógicamente no difiere de las del resto de la serie. Ejemplo b) c) Respuesta En este ejemplo el razonamiento para su resolución cambia respecto a los anteriormente vistos. No se trata ahora de descubrir qué elemento se añade, gira o cambia a lo largo de la serie, sino de encontrar la relación lógica común a todas las figuras. Así deberemos encontrar la figura que no difiere lógicamente de las de la serie. En este caso la característica común a todas ellas es que el círculo blanco se encuentra siempre situado en un ángulo agudo mientras que el círculo negro se encuentra siempre sobre un ángulo obstuso. La única figura que cumple esta condición de todas las opciones de respuesta es la. 23

6 Policía Local de Valencia 2.5. Analogías entre dos pares de figuras. Ejemplo es a como es a b) c) Respuesta Este tipo de preguntas más que series de figuras son como su nombre indica analogías entre dos pares de figuras que presentan el siguiente formato «a es a b como c es a?». Si observamos el primer par de figuras está formado por un triángulo negro con seis líneas pequeñas en su parte inferior y un hexágono blanco con tres líneas pequeñas en su parte inferior. De este par de figuras se deduce que el número de lados del polígono se duplica (de triángulo pasa a hexágono), que el color cambia (de negro a blanco) y que el número de líneas se divide entre dos (de seis se pasa a tres). Aplicando este mismo razonamiento a la figura del segundo par el cuadrado negro duplicaría su número de lados pasando a ser un octógono, cambiaría su color a blanco y el número de líneas se dividiría entre dos pasando de ocho a cuatro, la respuesta sería entonces la. 3. CONSEJOS PRÁCTICOS PARA SU REALIZACIÓN En el apartado anterior se han expuesto los casos de series de figuras más comunes pero a veces en las pruebas reales de psicotecnia pueden aparecer otros tipos. En cualquier caso para descubrir la figura que falta se deberán tener en cuenta factores como la evolución de la serie, la figura en sí, el fondo, el color, los elementos nuevos que se puedan añadir o eliminar, su orientación o giros que pueda hacer, etc. 24

7 El primer paso será observar si la serie consta de un elemento o varios. Si tiene un sólo elemento establecer su movimiento, si tiene varios, estudiar cada uno por separado. Es muy importante tener en cuenta que en una serie de dibujos nada aparece o desaparece porque sí, pero puede darse el caso de que dos elementos coincidan en el mismo lugar y uno oculte al otro por ejemplo porque una figura blanca más pequeña quede oculta por una negra más grande. Quizás los fallos fundamentales en las series de figuras son los debidos a los despistes a la hora de mover algún elemento del dibujo, o no fijarnos bien a la hora de marcar las respuestas, por lo que aconsejamos mucha concentración y un truco que da resultado para los despistes: ir dibujando en papel aparte la figura que nos piden conforme descubrimos la forma en la que evoluciona la serie. En las siguientes páginas incluimos algunos ejercicios de estas series de figuras en los que se incluyen el tiempo optimo para su realización y el grado de dificultad que presentan. Su solución razonada aparece al final de este tema. 25

8 Policía Local de Valencia EJERCICIO Nº 1 SERIES DE FIGURAS NUMERO DE PREGUNTAS: 6 TIEMPO DE REALIZACION: 15 minutos GRADO DE DIFICULTAD: media En las siguientes series de figuras de tres filas por tres columnas escoja de entre las opciones de respuesta la figura que sigue el razonamiento lógico de la serie. 1 2 b) c) b) c) e) f) e) f) 26

9 3 4 b) c) b) c) e) f) e) f) 5 6 b) c) b) c) e) f) e) f) 27

10 Policía Local de Valencia EJERCICIO Nº 2 SERIES DE FIGURAS NUMERO DE PREGUNTAS:8 TIEMPO DE REALIZACION: 18 minutos GRADO DE DIFICULTAD: media En la siguiente serie de figuras, escoja de entre las opciones de respuesta la figura que debe ocupar el último lugar según el razonamiento lógico de la serie. 1 b) c) 2 b) c) 3 b) c) 28

11 4 b) c) 5 b) c) 6 b) c) 7 b) c) 8 b) c) 29

12 Policía Local de Valencia EJERCICIO Nº 3 SERIES DE FIGURAS NUMERO DE PREGUNTAS: 29 TIEMPO DE REALIZACION: 45 minutos GRADO DE DIFICULTAD: media En la siguiente serie de figuras, escoja de entre las opciones de respuesta la figura que debe ocupar la posición central según el razonamiento lógico de la serie. 1 b) c) 2 b) c) 30

13 3 b) c) 4 b) c) 5 b) c) 31

14 Policía Local de Valencia EJERCICIO Nº 4 SERIES DE FIGURAS NUMERO DE PREGUNTAS: 5 TIEMPO DE REALIZACION: 10 minutos GRADO DE DIFICULTAD: media Escoja de entre las opciones de respuesta la figura que sigue el razonamiento lógico de las figuras de la serie. 1 b) c) 2 b) c) 32

15 3 b) c) 4 b) c) 5 b) c) 33

16 Policía Local de Valencia EJERCICIO Nº 5 SERIES DE FIGURAS NUMERO DE PREGUNTAS: 8 TIEMPO DE REALIZACION: 18 minutos GRADO DE DIFICULTAD: media Escoja de entre las opciones de respuesta la figura que sigue el razonamiento lógico de analogía entre los dos pares de figuras. 1 es a como es a b) c) 2 es a como es a b) c) 34

17 3 es a como es a b) c) 4 es a como es a b) c) 5 es a como es a b) c) 35

18 Policía Local de Valencia 6 es a como es a b) c) 7 es a como es a b) c) 8 es a como es a b) c) 36

19 SOLUCIONES EJERCICIO Nº 1 SERIES DE FIGURAS NUMERO DE PREGUNTAS: 6 TIEMPO DE REALIZACION: 15 minutos GRADO DE DIFICULTAD: media 1 A medida que nos desplazamos hacia la derecha en cada fila aumenta en una punta cada flecha y al mismo tiempo la figura gira 90º en el mismo sentido de las agujas del reloj. 2 b) A medida que nos desplazamos hacia la derecha en cada fila la figura gira 90º en sentido de las agujas del reloj y al mismo tiempo el dibujo blanco y el negro tienden a centrarse hasta quedar totalmente centrados en la tercera columna. 3 f) Las figuras de la tercera columna se forman superponiendo las de la primera y segunda columnas. 4 Las figuras de la segunda columna se forman superponiendo las de la primera y tercera columnas pero las líneas que son comunes a ambas figuras desaparecen. 5 e) Se trata de tres figuras diferentes que estarán presentes en cualquier fila y en cualquier columna. 6 A medida que en cada fila nos desplazamos de izquierda a derecha se añade una línea horizontal y conforme nos desplazamos de arriba hacia abajo en cada columna se añade una línea vertical. 37

20 Policía Local de Valencia SOLUCIONES EJERCICIO Nº 2 SERIES DE FIGURAS NUMERO DE PREGUNTAS: 8 TIEMPO DE REALIZACION: 18 minutos GRADO DE DIFICULTAD: media b) b) b) b) La figura gira cada vez 90º en sentido de las agujas del reloj, tanto la elipse como el círculo cambian cada vez de blanco a negro o viceversa y el círculo se hace tangente exterior o tangente interior con la elipse en el mismo punto. Partiendo de la primera figura el triángulo grande gira cada vez 90º en sentido de las agujas del reloj. El triángulo pequeño aumenta progresivamente su tamaño y cuando se solapa con el grande se sitúa siempre delante de éste. La figura en su conjunto gira cada vez 90º en sentido de las agujas del reloj y al mismo tiempo los puntos se desplazan a la siguiente línea desapareciendo cada vez uno hasta llegar al último. Los dos dibujos se aproximan progresivamente cambiando cada vez de color (la negra cambia a blanca y la blanca a negr hasta encajar perfectamente. La figura pierde cada vez los dos últimos trazos de sus extremos al mismo tiempo cambia de continua a punteada y viceversa y gira 90º en el mismo sentido de las agujas del reloj. Se añade cada vez una línea corta y una larga y al mismo tiempo la figura gira cada vez 90º en sentido contrario a las agujas del reloj. El número de lados de la figura aumenta cada vez en uno (triángulo, cuadrado, pentágono y hexágono). El área negra se desplaza progresivamente hacia el centro. El cuadrado negro se desplaza progresivamente hacia el centro y la figura en su conjunto una vez se orienta hacia la derecha y otra vez hacia la izquierda y así sucesivamente. 38

21 SOLUCIONES EJERCICIO Nº 3 SERIES DE FIGURAS NUMERO DE PREGUNTAS: 5 TIEMPO DE REALIZACION: 10 minutos GRADO DE DIFICULTAD: media 1 El área negra exterior se contrae haciéndose cada vez más pequeña hacia el centro y el área negra pequeña central hace exactamente lo contrario (se expande hacia el exterior) coincidiendo ambas en la figura central de la serie. 2 b) El cuadrado aumenta de tamaño a medida que el triángulo disminuye, el cuadrado cambia de blanco a negro mientras que el triángulo siempre se mantiene negro. La figura en su conjunto gira cada vez 90º en sentido de las agujas del reloj. 3 Los tres círculos giran cada vez 90º en sentido contrario a las agujas del reloj sobre sí mismos y sobre el cuadrado que los contiene, los que son blancos se convierten en negros y viceversa, manteniendo siempre su posición relativa. 4 El círculo negro se desplaza cada vez una posición hacia el fondo y la figura en su conjunto gira cada vez 90º en el mismo sentido de las agujas del reloj. 5 Cada vez se añade una línea y una punta de flecha hasta completar dos puntas en cada flecha y continuando con la flecha contigua. El conjunto gira 90º en el mismo sentido de las agujas del reloj. 39

22 Policía Local de Valencia SOLUCIONES EJERCICIO Nº 4 SERIES DE FIGURAS NUMERO DE PREGUNTAS: 5 TIEMPO DE REALIZACION: 10 minutos GRADO DE DIFICULTAD: media 1 Cada una de las figuras de la serie está formada por dos líneas perpendiculares que se cortan y no sólo se tocan c) Cada una de las figuras de la serie está formadas por tres líneas que siempre forman dos ángulos agudos y dos de ellas ni se cortan ni se tocan. En cada una de las figuras de la serie las flechas de punta negra son siempre perpendiculares entre sí y las de punta normal son paralelas entre sí. En cada una de las figuras de la serie la figura blanca se sitúa delante de la figura negra. 5 c) En cada una de las figuras de la serie el círculo blanco se sitúa en un ángulo agudo y el círculo negro en un ángulo obstuso. 40

23 SOLUCIONES EJERCICIO Nº 5 SERIES DE FIGURAS NUMERO DE PREGUNTAS: 8 TIEMPO DE REALIZACION: 18 minutos GRADO DE DIFICULTAD: media b) Cada par de figuras si se aproximan encajan, el primer cuadrilátero cambia de color y los tres restantes conservan el mismo Si la elipse grande gris pasa a negra, en el segundo par el cuadrado grande gris debe pasar a negro, si las dos elipses de los extremos pasan de blancas a grises los rombos blancos pasarán a gris, el dibujo central pasa de negro a blanco. En cada par de figuras las áreas negras pasan a blancas y las áreas blancas pasan a negras b) b) En cada par de figuras el dibujo de arriba pasa a la posición central, el dibujo central pasa abajo y el dibujo de abajo pasa arriba pero volteado verticalmente. En cada par de figuras el dibujo grande blanco se hace negro sin cambiar de tamaño ni de posición. El dibujo pequeño pasa de negro a blanco, gira 180º y pasa de ser tangente exterior a tangente interior con el grande. En cada par de figuras tenemos dos dibujos (estrella y cuadrado y hexágono y triángulo), ambos cambian de blanco a negro y viceversa y el que es continente pasa a contenido y viceversa. La segunda figura de cada par tiene una línea vertical menos y una línea horizontal más. 8 La segunda figura de cada par voltea verticalmente respecto de la primera de su par. c) 41

MATRICES DE RAVEN SET AVANZADO II CRITERIOS UTIIZADOS PARA RESOLVER LAS MATRICES DIDÁCTICA DE LA FÍSICA PÁGINA 20

MATRICES DE RAVEN SET AVANZADO II CRITERIOS UTIIZADOS PARA RESOLVER LAS MATRICES DIDÁCTICA DE LA FÍSICA PÁGINA 20 MATRICES DE RAVEN SET AVANZADO II CRITERIOS UTIIZADOS PARA RESOLVER LAS MATRICES NOMBRE: William H. Angulo M. DIDÁCTICA DE LA FÍSICA RESPUESTA: 8 PÁGINA 20 1. Se identificaron los elementos que forman

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

6. Mosaicos y movimientos. en el plano

6. Mosaicos y movimientos. en el plano 6. Mosaicos y movimientos en el plano Ámbito científico 1. Mosaicos 2. Módulos planos 3. Diseña mosaicos 4. Ejemplos de mosaicos 5. Ejemplos de tramas 6. Mosaicos semiregulares I 7. Libro de espejos 8.

Más detalles

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

Cuadriláteros y circunferencia

Cuadriláteros y circunferencia CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C

Más detalles

Además del grado, para medir la amplitud de los ángulos usamos los minutos y los segundos.

Además del grado, para medir la amplitud de los ángulos usamos los minutos y los segundos. 0 Los ángulos La medida de los ángulos Completa las siguientes oraciones. La unidad de medida de la amplitud de los ángulos es el grado. Su símbolo es. Además del grado, para medir la amplitud de los ángulos

Más detalles

Mª Rosa Villegas Pérez

Mª Rosa Villegas Pérez Mª Rosa Villegas Pérez FIGURAS PLANAS G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Polígonos.- / 14 POLÍGONOS Un polígono es una figura plana y cerrada formada al unir tres o

Más detalles

Unidad 1. Trazados fundamentales en el plano.

Unidad 1. Trazados fundamentales en el plano. MATERIA: CURSO: DIBUJO TÉCNICO 2º BACHILLERATO CONTENIDOS MÍNIMOS Unidad 1. Trazados fundamentales en el plano. Suma de segmentos. Diferencia de segmentos. Trazado de la mediatriz de un segmento. Trazado

Más detalles

Tema 2: Figuras geométricas

Tema 2: Figuras geométricas Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. 1 2 La circunferencia (p. 31) El cerebro humano es muy

Más detalles

Problema nº 1: Dominó/Dominó triangular

Problema nº 1: Dominó/Dominó triangular Problema nº 1: Dominó/Dominó triangular Las fichas del juego del dominó son rectángulos formados a partir de la unión de dos cuadrados. En esos cuadrados hay puntos que pueden variar de 0 a 6. Así tenemos

Más detalles

Click para ir al sitio web:

Click para ir al sitio web: New Jersey Center for Teaching and Learning Iniciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial de estudiantes y profesores.

Más detalles

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles.

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles. FICHA REFUERZO TEMA 12: FIGURAS PLANAS Y ESPACIALES CURSO: 1 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

PMI 5º Grado Geometría Trabajo en Clase-Trabajo en Casa Polígonos Trabajo en Casa 1. Establece si las siguientes figuras son polígonos o no. a.

PMI 5º Grado Geometría Trabajo en Clase-Trabajo en Casa Polígonos Trabajo en Casa 1. Establece si las siguientes figuras son polígonos o no. a. PMI 5º Grado Geometría Trabajo en Clase-Trabajo en Casa Polígonos Trabajo en Casa 1. Establece si las siguientes figuras son polígonos o no. a. b. c. 2. Qué características hacen a un polígono? 3. Cuáles

Más detalles

TEMA 6: LAS FORMAS POLIGONALES

TEMA 6: LAS FORMAS POLIGONALES EDUCACIÓN PLÁSTICA Y VISUAL 1º DE LA E.S.O. TEMA 6: LAS FORMAS POLIGONALES Los polígonos son formas muy atractivas para realizar composiciones plásticas. Son la base del llamado arte geométrico, desarrollado

Más detalles

LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90

LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90 LA GEOMETRÍA PLANA La geometría plana trata de aquellos elementos que solo tienen dos dimensiones y, que por lo tanto, se encuentran y operan en un plano. Los elementos básicos con los que se suele trabajar

Más detalles

ángulo agudo ángulo agudo triángulo acutángulo triángulo acutángulo ángulo ángulo Nombre Ángulo que es menor que un ángulo recto

ángulo agudo ángulo agudo triángulo acutángulo triángulo acutángulo ángulo ángulo Nombre Ángulo que es menor que un ángulo recto Tarjetas de vocabulario ángulo agudo ángulo agudo Ángulo que es menor que un ángulo recto acutángulo acutángulo Un con tres ángulos agudos ángulo ángulo Una figura formada por dos semirrectas que tienen

Más detalles

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos 1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular

Más detalles

Polígonos regulares, el triángulo de Sierpinski y teselados

Polígonos regulares, el triángulo de Sierpinski y teselados Sesión 3 Polígonos regulares, el triángulo de Sierpinski y teselados PROPÓSITOS Plantear y resolver problemas que involucren el análisis de características y propiedades de diversas figuras planas. MATERIALES

Más detalles

Conceptos geométricos II

Conceptos geométricos II Conceptos geométricos II Ángulo Ángulos Consecutivos Ángulos Alternos y Ángulos Correspondientes Polígono Polígono Regular Polígono Irregular Triángulo Cuadrilátero Superficie Círculo Superficie reglada

Más detalles

Club GeoGebra Iberoamericano 3 ÁNGULOS EN LA CIRCUNFERENCIA

Club GeoGebra Iberoamericano 3 ÁNGULOS EN LA CIRCUNFERENCIA 3 ÁNGULOS EN LA CIRCUNFERENCIA ÁNGULOS EN LA CIRCUNFERENCIA INTRODUCCIÓN Comenzamos la publicación de un nuevo tema, dedicado en esta ocasión al trabajo con ángulos en la circunferencia. La estructura

Más detalles

MATES UNIDADES LINEAS PUNTOS, SEMIRRECTAS Y SEGMENTOS 3º PRIMARIA APUNTES. Las líneas pueden ser rectas o curvas

MATES UNIDADES LINEAS PUNTOS, SEMIRRECTAS Y SEGMENTOS 3º PRIMARIA APUNTES. Las líneas pueden ser rectas o curvas MATES UNIDADES 10, 11 Y 12 3º PRIMARIA APUNTES LINEAS Las líneas pueden ser rectas o curvas Las rectas pueden ser de 3 tipos: verticales o diagonales (que también tiene otro nombre: oblicuas) horizontales

Más detalles

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II Unidad 1: Percibimos y representamos los objetos 1.- Descripción de las figuras geométricas en el plano. Clasificación de triángulos y cuadriláteros.

Más detalles

ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos:

ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos: CTIVIDDES DE GEMETRÍ PR 4º ES DE EPV Nombre y apellidos: Curso: TEM 1: TRZDS BÁSICS. 1. RECTS PRLELS Las rectas paralelas son aquellas que por mucho que las prolongues nunca se van a cortar. 1.1. Trazado

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

Forma Lados Ángulos. Nombre: Geometría Formas en dos dimensiones. Trabajo en clase. Tacha la forma que no corresponda a cada fila.

Forma Lados Ángulos. Nombre: Geometría Formas en dos dimensiones. Trabajo en clase. Tacha la forma que no corresponda a cada fila. Geometría Formas en dos dimensiones Trabajo en clase Tacha la forma que no corresponda a cada fila 1. 2. 3. Completa la tabla Forma Lados Ángulos NJ Center for Teaching and Learning ~ 1 ~ www.njctl.org

Más detalles

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA Las matemáticas, históricamente, comenzaron con la geometría. La geometría es la ciencia que estudia la forma y posición de la figuras y nos enseña a medir su extensión. Geometría (del griego geo, tierra,

Más detalles

EDUCACIÓN PLÁSTICA Y VISUAL. Trabajo de Recuperación de Pendientes Para 3º ESO. Geometría. IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1

EDUCACIÓN PLÁSTICA Y VISUAL. Trabajo de Recuperación de Pendientes Para 3º ESO. Geometría. IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1 EDUCACIÓN PLÁSTICA Y VISUAL Trabajo de Recuperación de Pendientes Para 3º ESO Geometría IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1 TEOREMA DE THALES El Teorema de Thales sirve para dividir un segmento

Más detalles

Examen Eliminatorio Estatal de la Olimpiada Mexicana de Matemáticas 2010.

Examen Eliminatorio Estatal de la Olimpiada Mexicana de Matemáticas 2010. Examen Eliminatorio Estatal de la Olimpiada Mexicana de Matemáticas 2010. Instrucciones: En la hoja de las respuestas marca la respuesta que creas correcta. Si marcas más de una respuesta en alguna pregunta

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 246 REFLEXIONA En la inauguración de la Casa de la Cultura observamos, entre otras, las siguientes figuras: Todas ellas son polígonos. Cuáles crees que son regulares? Explica por qué crees

Más detalles

III: Geometría para maestros. Capitulo 1: Figuras geométricas

III: Geometría para maestros. Capitulo 1: Figuras geométricas III: Geometría para maestros. Capitulo : Figuras geométricas SELECCIÓN DE EJERCICIOS RESUELTOS SITUACIONES INTRODUCTORIAS En un libro de primaria encontramos este enunciado: Dibuja un polígono convexo

Más detalles

Equilátero Isósceles Escaleno

Equilátero Isósceles Escaleno 3. Escribe la letra de cada uno de los triángulos dados en la primera página de esta guía en el cuadro que le corresponde. Clasificación de los triángulos según igualdad de la longitud de sus lados Equilátero

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS:

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: Un polígono es un figura cerrada formada por segmentos de recta que no se

Más detalles

Unidad 11. Figuras planas

Unidad 11. Figuras planas Unidad 11. Figuras planas Matemáticas Múltiplo 1.º ESO / Resumen Unidad 11 FIGURS LNS OLÍGONOS IRUNFERENI SIMETRÍ Elementos onstrucción lasificación Según el número de lados óncavos y convexos Regulares

Más detalles

TEMA 9 CUERPOS GEOMÉTRICOS

TEMA 9 CUERPOS GEOMÉTRICOS Tel: 98 9 6 91 Fax: 98 1 89 96 TEMA 9 CUERPOS GEOMÉTRICOS Objetivos / Criterios de evaluación O.1.1 Conocer las fórmulas de áreas y volúmenes de figuras geométricas sencillas de D. O.1. Resolver problemas

Más detalles

Título de la lámina 1-

Título de la lámina 1- pellido pellido, Nombre 1- Empleando la escuadra y el cartabón rellena los tres espacios a continuación con paralelas a las direcciones dadas. Procura que la distancia entre las paralelas sea la misma

Más detalles

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS

Más detalles

Se denomina mosaico a un recubrimiento del plano mediante piezas llamadas teselas sin dejar huecos y sin solapamiento.

Se denomina mosaico a un recubrimiento del plano mediante piezas llamadas teselas sin dejar huecos y sin solapamiento. Qué entendemos por Mosaico? Se denomina mosaico a un recubrimiento del plano mediante piezas llamadas teselas sin dejar huecos y sin solapamiento. En otro lenguaje, formar un mosaico es embaldosar una

Más detalles

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado... Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS

DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS 1.1.1 1.1.2 Las figuras geométricas, como los polígonos, aparecen en muchos lugares. En estas lecciones, los alumnos estudiarán más atentamente los polígonos y

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES GENERALES Y CALIFICACIÓN Después

Más detalles

SISTEMA DIÉDRICO: ALFABETO DEL PLANO

SISTEMA DIÉDRICO: ALFABETO DEL PLANO SISTEMA DIÉDRICO: ALFABETO DEL PLANO Definiciones y representación Las trazas de un plano son las rectas de intersección de dicho plano con los planos de proyección H y V. Existen, por lo tanto y en general,

Más detalles

TEMA 3: DIBUJO VECTORIAL. Realización de dibujos vectoriales con la herramienta OpenOffice Draw

TEMA 3: DIBUJO VECTORIAL. Realización de dibujos vectoriales con la herramienta OpenOffice Draw TEMA 3: DIBUJO VECTORIAL Realización de dibujos vectoriales con la herramienta OpenOffice Draw Qué vamos a ver? Qué tipos de dibujos existen, y la diferencia entre los mapas de bits y los dibujos vectoriales

Más detalles

ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: TEMA 1: TRAZADOS BÁSICOS

ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: TEMA 1: TRAZADOS BÁSICOS ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: Curso: TEMA 1: TRAZADOS BÁSICOS 1. LA ESCUADRA Y EL CARTABÓN. Observando tu escuadra y tu cartabón describe su forma y sus ángulos.

Más detalles

POLÍGONO ÁNGULOS DE UN POLÍGONO CLASIFICACIÓN: La denominación de polígono palabra compuesta de poli, del griego: muchos; y gonos del griego: ángulos

POLÍGONO ÁNGULOS DE UN POLÍGONO CLASIFICACIÓN: La denominación de polígono palabra compuesta de poli, del griego: muchos; y gonos del griego: ángulos POLÍGONO La denominación de polígono palabra compuesta de poli, del griego: muchos; y gonos del griego: ángulos Un polígono es una porción del plano limitada por una línea poligonal cerrada. Los segmentos

Más detalles

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos:

EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: Seminario Universitario Matemática EJERCICIOS MÓDULO 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a) 5 b ) 170 c ) 0 d ) 75 e) 10 f ) 50 g ) 0 h ) 87 i ) 08 j ) 700 k

Más detalles

Introducción. Este trabajo será realizado con los siguientes fines :

Introducción. Este trabajo será realizado con los siguientes fines : Introducción Este trabajo será realizado con los siguientes fines : Aprender mas sobre la geometría analítica. Tener mejores conceptos sobre ella ; los cuales me pueden ayudar con las pruebas ICFES. Otro

Más detalles

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC: ÓPTICA GEOMÉTRICA Conceptos generales: Imágenes reales. No se ven a simple vista, pero pueden recogerse sobre una pantalla. Se forman por la intersección de rayos convergentes. Imágenes virtuales. No existen

Más detalles

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles

Tema 2: Figuras geométricas

Tema 2: Figuras geométricas Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. La circunferencia (p. 31) El cerebro humano es muy bueno

Más detalles

Unidad 5. Tablas. La celda que se encuentra en la fila 1 columna 2 tiene el siguiente contenido: 2º Celda

Unidad 5. Tablas. La celda que se encuentra en la fila 1 columna 2 tiene el siguiente contenido: 2º Celda Unidad 5. Tablas Una tabla está formada por celdas o casillas, agrupadas por filas y columnas, en cada casilla se puede insertar texto, números o gráficos. Lo principal antes de empezar a trabajar con

Más detalles

PROF: Jesús Macho Martínez

PROF: Jesús Macho Martínez DIBUJO TÉCNICO ELEMENTAL PROF: Jesús Macho Martínez 1º.- Trazar la perpendicular a r por el punto P. 2º.- Trazar la bisectriz del ángulo que forman r y s. P * r r s 3º.- Trazar las tangentes interiores

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

Soluciones Primer Nivel - 5º Año de Escolaridad

Soluciones Primer Nivel - 5º Año de Escolaridad Primer Nivel - 5º Año de Escolaridad Problema 1. La diagonal del cuadrado mide cm. El cuadrado se descompone en cuatro triángulos rectángulos cuyos catetos miden 1cm. Las áreas de estos triángulos miden

Más detalles

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS. EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se

Más detalles

a) Si la intensidad de corriente circula en el mismo sentido en ambas. b) Si la intensidad de corriente circula en sentidos contrarios.

a) Si la intensidad de corriente circula en el mismo sentido en ambas. b) Si la intensidad de corriente circula en sentidos contrarios. PROBLEMAS DE CAMPO MAGNÉTICO 1. Las líneas de campo gravitatorio y eléctrico pueden empezar o acabar en masas o cargas, sin embargo, no ocurre lo mismo con las líneas de campo magnético que son líneas

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD SLUINES LS EJERIIS E L UNI Pág. 1 Página 207 PRTI 1 Reproduce sobre papel cuadriculado el paralelogramo (,,, ). a) Somételo a una traslación de vector t 1. b) Traslada la figura obtenida, ', mediante t

Más detalles

SISTEMASS DE REPRESENTACIÓNN Geometría Básica

SISTEMASS DE REPRESENTACIÓNN Geometría Básica SISTEMASS DE REPRESENTACIÓNN Geometría Básica Coordinadora de Cátedra: Ing. Canziani, Mónica Profesores: Arq. Aubin, Mónica Arq. Magenta, Gabriela Ing. Medina, Noemí Ing. Nassipián, Rosana V. Ing. Borgnia,

Más detalles

Capítulo 2 SECCIÓN DE FIGURAS PLANAS

Capítulo 2 SECCIÓN DE FIGURAS PLANAS Capítulo SECCIÓN DE FIGURAS PLANAS 1 .1. INTRODUCCIÓN Una figura plana, tiene todos sus puntos sobre un mismo plano. En la Figura 1, las rectas m y n se intersectan en un punto. En la Figura, r intersecta

Más detalles

24. SISTEMA DIÉDRICO.- LA RECTA.

24. SISTEMA DIÉDRICO.- LA RECTA. 24. SISTEMA DIÉDRICO.- LA RECTA. 24.1. Representación de la Recta. Una recta queda inequívocamente determinada conocidos dos puntos de la misma; para hallar sus proyecciones bastará unir las proyecciones

Más detalles

La carrera geométrica

La carrera geométrica La carrera geométrica Materiales: el tablero 1, un personaje por cada jugador y un dado. 1. Cada jugador ubica su ficha en la salida. 2. Por turno, cada jugador tira el dado y mueve su ficha tantos casilleros

Más detalles

CUADERNO DE CÁLCULO:

CUADERNO DE CÁLCULO: CUADERNO DE CÁLCULO: 2013-2014 TERCER CICLO 6º PRIMARIA ALUMNO/A:... Cálculo 6º Ed. Primaria Colegio Romareda 2013/14 Página 2 Cálculo 6º Ed. Primaria Colegio Romareda 2013/14 Página 3 Índice Cálculo mental

Más detalles

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento

Más detalles

Un ángulo mide y otro Cuánto mide la suma de estos ángulos?

Un ángulo mide y otro Cuánto mide la suma de estos ángulos? Los Ángulos Qué es un ángulo y su notación? Son dos rayos cualesquiera que determinan dos regiones del plano. Su notación: Para nombrar los ángulos, utilizaremos los símbolos

Más detalles

Círculo Definición: Un círculo es el conjunto de todos los puntos de un plano que se encuentran comprendidos en una circunferencia. Usualmente, el cír

Círculo Definición: Un círculo es el conjunto de todos los puntos de un plano que se encuentran comprendidos en una circunferencia. Usualmente, el cír Círculos y elipses Círculo Definición: Un círculo es el conjunto de todos los puntos de un plano que se encuentran comprendidos en una circunferencia. Usualmente, el círculo es el área, mientras que la

Más detalles

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo

Más detalles

5.5 LÍNEAS TRIGONOMÉTRICAS

5.5 LÍNEAS TRIGONOMÉTRICAS 5.5 LÍNES TRIGONOMÉTRIS Sea (O, ) una circunferencia con centro en el origen de coordenadas O(0, 0) radio la unidad. Si se construe un ángulo con vértice en el origen sentido positivo podemos obtener las

Más detalles

CLASIFICACIÓN DE POLÍGONOS: SU DIDÁCTICA.

CLASIFICACIÓN DE POLÍGONOS: SU DIDÁCTICA. CLASIFICACIÓN DE POLÍGONOS: SU DIDÁCTICA. AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO Resumen EN ÉSTE ARTÍCULO, ESTUDIAMOS LA CLASIFICACIÓN DE POLÍGONOS. HACEMOS UNA CLASIFICACIÓN

Más detalles

5º Grado. Geometría. Polígonos. Slide 1 / 97. Slide 2 / 97. Slide 3 / 97. Slide 4 / 97. Slide 6 / 97. Slide 5 / 97. Geometría: Temas de la Unidad

5º Grado. Geometría. Polígonos. Slide 1 / 97. Slide 2 / 97. Slide 3 / 97. Slide 4 / 97. Slide 6 / 97. Slide 5 / 97. Geometría: Temas de la Unidad Slide 1 / 97 New Jerse enter for Teaching and Learning Iniciativa de Matemática Progresiva ste material está disponible gratuitamente en www.njctl.org está pensado para el uso no comercial de estudiantes

Más detalles

RESUMEN BÁSICO DEL BLOQUE DE GEOMETRÍA Matemáticas 3º de ESO

RESUMEN BÁSICO DEL BLOQUE DE GEOMETRÍA Matemáticas 3º de ESO RESUMEN ÁSICO DEL LOQUE DE GEOMETRÍA Matemáticas 3º de ESO 1-. Conceptos fundamentales. Punto Recta Plano Semirrecta: porción de recta limitada en un extremo por un punto Semiplano: es cada una de las

Más detalles

Seminario de problemas. Curso Hoja 1

Seminario de problemas. Curso Hoja 1 Seminario de problemas. Curso 2011-12. Hoja 1 1. En la estación central de una red ferroviaria se venden tantos billetes distintos como estaciones a las que se puede ir desde una estación determinada de

Más detalles

001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ).

001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ). 1.6 Criterios específicos de evaluación. 001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ). 002. Calcula el total de elementos que se puedan codificar con una determinada clave. 003.

Más detalles

Preguntas Propuestas

Preguntas Propuestas reguntas ropuestas 2 ... olígonos 1. alcule la suma de lados de dos polígonos si se sabe que las sumas de las medidas de sus ángulos interiores difieren en 540º y el número de diagonales del polígono de

Más detalles

Dibujo Técnico Sistema diédrico.- Cambios de plano, giros y ángulos. ÁNGULOS.

Dibujo Técnico Sistema diédrico.- Cambios de plano, giros y ángulos. ÁNGULOS. 30. SISTEMA DIÉDRICO.- CAMBIOS DE PLANO, GIROS Y ÁNGULOS. 30.1. Cambios de plano. Los cambios de planos de proyección consisten en tomar o elegir otros planos de proyección de forma que los elementos que

Más detalles

Clasifi cación de polígonos

Clasifi cación de polígonos Clasifi cación de polígonos Cuándo un polígono es regular? Marca la opción correcta. Sus ángulos son iguales. Sus lados son iguales. Sus lados y sus ángulos son iguales. Sus diagonales son iguales. Escribe

Más detalles

Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica

Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica Ángulos. DEFINICIÓN FIGURA OBSERVACIONES Ángulo. Es la abertura formada por dos semirrectas unidas en un solo punto llamado vértice. Donde: α = Ángulo O = Vértice OA = Lado inicial OB = Lado terminal Un

Más detalles

Construcciones. Proporciones. Áreas

Construcciones. Proporciones. Áreas Construcciones Proporciones Áreas Rectángulo y Cometa Dibuja una cometa inscrita en un rectángulo Qué relación hay entre sus áreas respectivas? Cómo cambiará el perímetro de la cometa a medida que E y

Más detalles

Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia

Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia 1. Cuáles son algunas de las relaciones especiales entre los ángulos? 2. Explique qué es un polígono y cómo determinar

Más detalles

. De R (Reales) a C (Complejos)

. De R (Reales) a C (Complejos) INTRODUCCIÓN Los números complejos se introducen para dar sentido a la raíz cuadrada de números negativos. Así se abre la puerta a un curioso y sorprendente mundo en el que todas las operaciones (salvo

Más detalles

ACTIVIDADES PROPUESTAS

ACTIVIDADES PROPUESTAS GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) (Curso 2003-2004) MATERIA: DIBUJO TÉCNICO II Junio Septiembre R1 R2 INSTRUCCIONES GENERALES Y VALORACIÓN

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN 1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales TIPOS DE SISTEMAS. DISCUSIÓN DE SISTEMAS. Podemos clasificar los sistemas según el número de soluciones: Incompatible. No tiene solución Compatible. Tiene solución. Compatible

Más detalles

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 4: Figuras geométricas

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 4: Figuras geométricas Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 4: Figuras geométricas 1 Conceptos geométricos En la clase de matemáticas, y en los textos escolares, encontramos expresiones tales como:

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro)

UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) UNIDAD 12.- Estadística. Tablas y gráficos (tema12 del libro) 1. ESTADÍSTICA: CLASES Y CONCEPTOS BÁSICOS En sus orígenes históricos, la Estadística estuvo ligada a cuestiones de Estado (recuentos, censos,

Más detalles

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

Insertar WordArt INSERTAR GRÁFICOS

Insertar WordArt INSERTAR GRÁFICOS Insertar WordArt Mediante WordArt se pueden crear títulos y rótulos dentro de nuestra hoja Sólo tenemos que introducir o seleccionar el texto al que queremos aplicarle un estilo de WordArt y automáticamente

Más detalles

LA GEOMETRÍA EN EL DISEÑO GRÁFICO

LA GEOMETRÍA EN EL DISEÑO GRÁFICO Qué es la GEOMETRÍA? LA GEOMETRÍA EN EL DISEÑO GRÁFICO La geometría es la parte de las matemáticas que estudia las propiedades y las medidas de las figuras en el plano o en el espacio. El ser humano es

Más detalles

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS Sep. 18 de 2015 Señores Estudiantes grados Novenos El siguiente trabajo ya lo estamos realizando en clase, pero los datos que a continuación aparecen son refuerzo para terminar las figuras geométricas

Más detalles

Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes. Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA

Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes. Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA 1. 2. 3. 4. 5. 6. Educación Plástica y Visual de 1º de ESO Página 48 Ejercicio 5.1 Los polígonos

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles