Capítulo 6. Fluidos reales
- Eduardo Ruiz Gómez
- hace 3 años
- Vistas:
Transcripción
1 Capítulo 6 Fluidos reales 1
2 Viscosidad El rozamiento en el movimiento de los fluidos se cuantifica a través del concepto de viscosidad, η, que se define como: F A = η v d El coeficiente de viscosidad tiene unidades de N s/m 2.
3 Ley de Poiseuille El caudal total que circula por un cilindro de radio R y longitud L sometido a una diferencia de presiones p 1 p 2 es: Q = p 1 p 2 L πr 4 8η La velocidad media v media del fluido vale: v media = p 1 p 2 L La velocidad máxima es doble que la media. R 2 8η
4 Uniones entre circuitos La presión y el caudal representan equivalen al potencial eléctrico y la intensidad de corriente en los circuitos eléctricos. La ley de Poiseuille es similar a la de Ohm (I = V/R): Q = p R f en donde R f es la resistencia al flujo, igual a: Unión en serie: R f = 8ηL πr 4. Q 1 = Q 2 y p = p 1 + p 2 La resistencia total es la suma de las resistencias de los conductos: Unión en paralelo: R f = R f,1 + R f,2. Q = Q 1 + Q 2 y p 1 = p 2 La inversa de la resistencia total es la suma de las inversas de las resistencias de los circuitos: 1 R f = 1 R f,1 + 1 R f,2.
5 Número de Reynolds El número de Reynolds Re es una magnitud adimensional definida como: Re = ρvd η Si tenemos dos conjuntos de parámetros diferentes, pero con el mismo número de Reynolds, decimos que sus movimientos son semejantes. Cuando Re < 2000, cualquier turbulencia que se origine decae, y lo hace tanto más rápido cuanto menor sea Re. Por el contrario, cuando Re > 2000, cualquier turbulencia que se produzca ya no decae.
6 Fuerzas de arrastre La fuerza de arrastre, la que produce un fluido a un objeto en su seno, es una combinación de la fuerza de inercia y de la de rozamiento. Para número de Reynolds bajos, domina la de rozamiento y para altos, la de inercia. La fuerza de arrastre podemos escribirla como: F a = ρv 2 D 2 f(re) en donde f(re) es una función del número de Reynolds. Para objetos grandes, la fuerza inercial es la dominante y definimos el coeficiente de arrastre como: siendo A el área del objeto. C D = F a 1 2 ρv2 A
7 Ley de Stokes Para los objetos muy pequeños domina la fuerza de rozamiento. La ley de Stokes nos da dicha fuerza para una esfera: en donde r es el radio de la esfera. F r = 6πηvr Cuando una disolución precipita, la velocidad de sedimentación está determinada por la ley de Stokes y vale: v = 2r2 (ρ 0 ρ) g. 9η
8 Circulación sanguínea La resistencia periférica total es el cociente entre la diferencia de presión a la salida y a la entrada del corazón y el caudal sanguíneo. Si un conducto de área A 1 se bifurca en n iguales, de área A 2, la caída de presión por unidad de longitud se mantiene constante si se verifica: A 1 = na 2. La potencia del corazón es el trabajo realizado en un latido W dividido por el intervalo de tiempo entre latidos: P = W t = p V t = p Q Esta expresión ha de ser evaluada separadamente para cada ventrículo.
9 Problema 6.1 Qué fuerza hay que ejercer sobre una superficie circular de 0.2 m de radio apoyada sobre una capa de sangre de 1 cm de grosor para que se mueva con una velocidad de 1 m/s?
10 Problema 6.2 Tenemos una manguera de 10 m de largo y 1 cm de diámetro conectada a un grifo con una presión de 2 atm. Calcula: (a) el caudal de agua que circula por ella, (b) la velocidad media del agua, (c) la velocidad máxima, (d) la resistencia al flujo de la manguera.
11 Problema 6.3 Para medir la viscosidad de un fluido utilizamos un conducto de 2 m de largo y 4 mm de radio. Si aplicamos una diferencia de presión de 10 mm de Hg entre los extremos del conducto, circula por él un caudal de 0,3 l/min. Cuál es el coeficiente de viscosidad del líquido?
12 Problema 6.4 Un depósito cilíndrico de 0.5 m de radio y 1.2 m de altura está lleno de agua y posee un orificio, en su parte inferior, conectado a un conducto de 0.2 m de longitud y 2 mm de radio. Determina la velocidad de salida del agua en función del tiempo, medida desde que se empieza a vaciar el depósito. (Desprecia la velocidad del agua en el interior del depósito.)
13 Problema 6.5 Un circuito está formado por dos conductos de y N s/m 5 de resistencia unidos en serie. La presión total sobre el circuito es de 3 atm. Qué caudal atraviesa el circuito? Cuál es la presión en el punto de unión de los dos conductos?
14 Problema 6.6 Unimos en paralelo seis conductos iguales de N s/m 5 de resistencia. El caudal que a traviesa cada uno de ellos es de 45 l/min. Cuál es el caudal total que atraviesa el circuito? Cuál es la diferencia de presiones entre los extremos del circuito?
15 Problema 6.7 Queremos instalar un goteo en una finca. La longitud del conducto principal ha de ser de 1800 m, y deseamos un caudal de 100 l/min cuando bombeamos con una presión de 3 atm. Qué radio interno ha de poseer el conducto principal?
16 Problema 6.8 Un conducto de 10 8 N s/m 5 de resistencia está unido en serie a otros dos unidos entre sí en paralelo. La resistencia de uno de estos es de N s/m 5. La presión total sobre el circuito es de 200 mm de Hg y el caudal que atraviesa el primer conducto es de 5.3 l/min. Encuentra: (a) la presión en el punto de unión de los circuitos, (b) la resistencia desconocida, (c) el caudal a través del conducto de resistencia desconocida.
17 Problema 6.9 La resistencia al flujo de un vaso aumenta un 10 % porque en algunos tramos la sección se ha reducido a la mitad. En qué porcentaje de la longitud del vaso hay obstrucciones?
18 Problema 6.10 Encuentra la relación entre el número de Reynolds de un objeto que se mueve con igual velocidad en el aire y en el agua.
19 Problema 6.11 Estima aproximadamente el número de Reynolds de: (a) un nadador capaz de hacer 100 m en 52 s, (b) un atleta que recorre 100 m en 10 s, (c) un submarino de 3 m de radio viajando a 36 km/h, (d) un avión de 3 m de radio volando a 900 km/h, (e) una partícula de una micra de diámetro que se desplaza en el agua a 0.01 m/s.
20 Problema 6.12 Para qué caudal se volvería turbulento un flujo de agua en una tubería de 1 cm de diámetro?
21 Problema 6.13 Una aorta posee una sección de 4 cm 2. A qué velocidad comenzará a hacerse turbulento el flujo sanguíneo? Cuál será entonces el caudal?
22 Problema 6.14 Un automóvil de 1000 kg de masa posee un coeficiente de arrastre de 0.32 y su área frontal es de 2 m 2. Calcula: (a) la fuerza de arrastre que experimenta cuando va a 100 km/h, (b) la potencia que necesita para poder viajar a 180 km/h en una carretera horizontal, (c) lo mismo, pero para una carretera con un 2 % de pendiente.
23 Problema 6.15 Con qué velocidad se sumergirá en el agua un objeto esférico de 1.2 kg/l de densidad y 0.8 cm de diámetro?
24 Problema 6.16 Una muestra de sangre posee una velocidad de sedimentación 4 veces superior a la normal debido a que los glóbulos rojos se han unido parcialmente entre sí. Si suponemos que en el caso normal éstos no están unidos en absoluto, cuántos glóbulos rojos se agregan en media formando nuevas partículas efectivas en la muestra considerada?
25 Problema 6.17 En una arteriola de 20 cm de longitud la presión sanguínea cae 18 mm de Hg. Por ella circula un caudal de 0.1 l/min. Cuál es el radio de la arteriola?
26 Problema 6.18 Supongamos que la caída de presión por unidad de longitud es constante en el cuerpo humano, debido a la forma de bifurcarse los vasos. Si el área total de los capilares es 500 veces mayor que la de la aorta, determina: (a) el número de capilares, (b) la sección de cada uno de ellos, sabiendo que la de la aorta es de 3 cm 2, (c) la velocidad de la sangre en los capilares, teniendo en cuenta que el caudal total es de 5 l/min.
27 Problema 6.19 Un corazón bombea 0.08 l de sangre, 60 veces por minuto, con una presión media de 110 mm de Hg. La aorta correspondiente posee un radio de 1.2 cm. Calcula: (a) el caudal sanguíneo, (b) la potencia que ejerce el ventrículo izquierdo, (c) la velocidad de la sangre en la aorta, (d) la resistencia al flujo del sistema circulatorio, (e) la longitud que debería tener un conducto de 1 cm de diámetro para que su resistencia al flujo coincidiera con la del sistema circulatorio.
28 Problema 6.20 Supongamos un modelo de sistema circulatorio en el que cada vaso se bifurca cada x centímetros en dos iguales, cuyas secciones son igual a la del anterior dividida por 2. Despúes de 15 niveles de división, comienza un proceso inverso de unión. La aorta posee un radio de 0.5 cm, el caudal es de 5 l/min y la presión cardíaca es de 100 mm de Hg. Calcula el valor de x.
29 6.1 Qué fuerza hay que ejercer sobre una superficie circular de 0.2 m de radio apoyada sobre una capa de sangre de 1 cm de grosor para que se mueva con una velocidad de 1 m/s? La ecuación que nos da la fuerza de fricción, debida a la viscosidad, es: F = η v d A = π 0.22 = 0.05 N.
30 6.2 Tenemos una manguera de 10 m de largo y 1 cm de diámetro conectada a un grifo con una presión de 2 atm. Calcula: (a) el caudal de agua que circula por ella, (b) la velocidad media del agua, (c) la velocidad máxima, (d) la resistencia al flujo de la manguera. (a) La ley de Poiseuille nos da el caudal que atraviesa la manguera: Q = p 1 p 2 L πr 4 8η = π = m3 /s. (b) La velocidad media es el caudal dividido por la sección: v = Q A = = 63.7 m/s. π (c) La velocidad máxima es doble que la media: v max = 2v = = 127 m/s. (d) La resistencia al flujo de la manguera es: R f = 8Lη = = N s/m 5. πr4 π
31 6.3 Para medir la viscosidad de un fluido utilizamos un conducto de 2 m de largo y 4 mm de radio. Si aplicamos una diferencia de presión de 10 mm de Hg entre los extremos del conducto, circula por él un caudal de 0,3 l/min. Cuál es el coeficiente de viscosidad del líquido? Podemos despejar el coeficiente de viscosidad de la ley de Poiseuille: η = p 1 p 2 L πr 4 8Q = π = N s/m2.
32 6.4 Un depósito cilíndrico de 0.5 m de radio y 1.2 m de altura está lleno de agua y posee un orificio, en su parte inferior, conectado a un conducto de 0.2 m de longitud y 2 mm de radio. Determina la velocidad de salida del agua en función del tiempo, medida desde que se empieza a vaciar el depósito. (Desprecia la velocidad del agua en el interior del depósito.) Para obtener la velocidad de salida, hemos de calcular primero el caudal a través de la ley de Poiseuille. Como la diferencia de presiones en el conducto de salida es igual a la presión hidrostática del agua del depósito, ρgh, tenemos que el caudal vale: Q = ρgh πr 4 L 8η. La altura del agua depende, a su vez, del caudal que sale: h = h 0 Q S t en donde S es el área de la base del depósito. Eliminando h de ambas ecuaciones tenemos: 8Lη ρgπr 4Q = h 0 Q S t = Q = h 0 8Lη ρgπr + t. 4 S Y la velocidad media vendrá dada por: v = Q A = Sh 0 πr 2 8LηS ρgπr 4 + t = t = t m/s.
33 6.5 Un circuito está formado por dos conductos de y N s/m 5 de resistencia unidos en serie. La presión total sobre el circuito es de 3 atm. Qué caudal atraviesa el circuito? Cuál es la presión en el punto de unión de los dos conductos? Al estar los conductos unidos en serie, su resistencia total es la suma de las resistencias, Ns/m 5, y el caudal es entonces: Q = p R f = = m 3 /s. Suponemos que el circuito con una resistencia de Ns/m 5 es el primero. La presión p A en el punto de unión es: p A = QR f = = N/m 2.
34 6.6 Unimos en paralelo seis conductos iguales de N s/m 5 de resistencia. El caudal que a traviesa cada uno de ellos es de 45 l/min. Cuál es el caudal total que atraviesa el circuito? Cuál es la diferencia de presiones entre los extremos del circuito? El caudal total es seis veces el caudal a través de uno de los circuitos: La diferencia de presiones es: Q T = 6Q = 6 45 = 270 l/min. p = QR f = = N/m 2.
35 6.7 Queremos instalar un goteo en una finca. La longitud del conducto principal ha de ser de 1800 m, y deseamos un caudal de 100 l/min cuando bombeamos con una presión de 3 atm. Qué radio interno ha de poseer el conducto principal? Despejamos el radio del conducto a partir de la ecuación de Poiseuille: R = ( 8ηLQ )1/4 = p π ( ) /4 = m π 60
36 6.8 Un conducto de 10 8 N s/m 5 de resistencia está unido en serie a otros dos unidos entre sí en paralelo. La resistencia de uno de estos es de N s/m 5. La presión total sobre el circuito es de 200 mm de Hg y el caudal que atraviesa el primer conducto es de 5.3 l/min. Encuentra: (a) la presión en el punto de unión de los circuitos, (b) la resistencia desconocida, (c) el caudal a través del conducto de resistencia desconocida. (a) Para encontrar la presión en el punto de unión de los dos circuitos, aplicamos la ley de Poiseuille al primer conducto: y despejamos: Q = p p a R 1 p A = p QR 1 = = N/m2. (b) La resistencia total del circuito ha de ser: R T = p = = N s/m 5. Q 5 3 La resistencia del conjunto formado por los dos conductos en paralelo es: R 23 = R T R 1 = = N s/m 5. Por tanto, la resistencia desconocida vale: 1 1 R 3 = 1 1 = 1 R 23 R = N s/m (c) El caudal que se nos pide es: Q = p A R 3 = = m 3 /s.
37 6.9 La resistencia al flujo de un vaso aumenta un 10 % porque en algunos tramos la sección se ha reducido a la mitad. En qué porcentaje de la longitud del vaso hay obstrucciones? La resistencia de un conducto es proporcional a la longitud e inversamente proporcional a R 4. Llamemos α al porcentaje de la longitud en que hay obstrucciones. La nueva resistencia es: ( R f = 1.1R f = 1 α ) R f + α R f o sea: De aquí dspejamos α: 0.1 = α (16 1). 100 α = = 0.67 %.
38 6.10 Encuentra la relación entre el número de Reynolds de un objeto que se mueve con igual velocidad en el aire y en el agua. La relación entre los números de Reynolds en el aire Re 1 y en el agua Re 2 es: Re 1 = ρ 1vDη = Re 2 η 1 ρ 2 vd = 1 15 = Hemos tomado la densidad del aire a 20 C.
39 6.11 Estima aproximadamente el número de Reynolds de: (a) un nadador capaz de hacer 100 m en 52 s, (b) un atleta que recorre 100 m en 10 s, (c) un submarino de 3 m de radio viajando a 36 km/h, (d) un avión de 3 m de radio volando a 900 km/h, (e) una partícula de una micra de diámetro que se desplaza en el agua a 0.01 m/s. (a) El número de Reynolds del nadador es: Re = ρvd η = = ρ y η corresponden al agua, y hemos supuesto un diámetro de 0.3 m. (b) El número de Reynolds del atleta es aproximadamente: Re = ρvd η = = ρ y η corresponden al aire, y hemos supuesto un diámetro de 0.6 m. (c) Para el submarino tenemos: Re = ρvd = η = (d) Para el avión: Re = ρvd η = = 108. (e) El número de Reynolds de la partícula es: Re = ρvd η = = 0.01.
40 6.12 Para qué caudal se volvería turbulento un flujo de agua en una tubería de 1 cm de diámetro? La velocidad a la que se volvería turbulento el flujo es: v = η Re ρd = = 20 m/s. Hemos supuesto que el valor crítico del número de Reynolds es El caudal correspondiente a esa velocidad vale: Q = va = vπr 2 = 20 π = m 3 /s.
41 6.13 Una aorta posee una sección de 4 cm 2. A qué velocidad comenzará a hacerse turbulento el flujo sanguíneo? Cuál será entonces el caudal? La velocidad crítica, por encima de la cual el flujo se hace turbulento, en la aorta será: v = η Re ρd = ( ) /2 = 0.34 m/s π El caudal correspondiente a esa velocidad vale: Q = va = = m 3 /s.
42 6.14 Un automóvil de 1000 kg de masa posee un coeficiente de arrastre de 0.32 y su área frontal es de 2 m 2. Calcula: (a) la fuerza de arrastre que experimenta cuando va a 100 km/h, (b) la potencia que necesita para poder viajar a 180 km/h en una carretera horizontal, (c) lo mismo, pero para una carretera con un 2 % de pendiente. (a) La fuerza de arrastre que experimenta el automóvil es: ( ) F = 1 2 ρv2 AC D = = 296 N. 3.6 (b) La potencia necesaria para vencer la fuerza de arrastre vale: P = F v = 1 2 ( ) = W. (c) En este caso, en que hay una pendiente, hemos de añadir a la potencia anterior la necesaria para vencer la gravedad: P = P + mgh t = P + = mgl sen α t 0.02 = W. Hemos tenido en cuenta que sen(arctan 0.02) 0.02.
43 6.15 Con qué velocidad se sumergirá en el agua un objeto esférico de 1.2 kg/l de densidad y 0.8 cm de diámetro? La fuerza de rozamiento que ejerce el agua sobre el objeto viene dada por la ley de Stoke. La velocidad de caída se consigue cuando dicha fuerza es igual al peso del objeto menos el empuje del agua: v = 2 9η r2 g(ρ o ρ a ) 2 = (1.2 1)1000 = 70 m/s.
44 6.16 Una muestra de sangre posee una velocidad de sedimentación 4 veces superior a la normal debido a que los glóbulos rojos se han unido parcialmente entre sí. Si suponemos que en el caso normal éstos no están unidos en absoluto, cuántos glóbulos rojos se agregan en media formando nuevas partículas efectivas en la muestra considerada? La velocidad de sedimentación se obtiene igualando la fuerza de roxamiento al peso del objeto menos el empuje del agua. Como dicha velocidad de sedimentación es proporcional al radio al cuadrado, tenemos: v v = r 2 r 2 = 4 = r = 2r. La relación entre el volumen de uno de los nuevos agregados de partículas y el de la partícula original es: V V = r 3 r 3 = 8. Luego cada nueva partícula es el agregado de 8 glóbulos rojos.
45 6.17 En una arteriola de 20 cm de longitud la presión sanguínea cae 18 mm de Hg. Por ella circula un caudal de 0.1 l/min. Cuál es el radio de la arteriola? Aplicamos la ley de Poiseuille a la arteriola y despejamos el radio: R = QL8η (p 1 p 2 )π 1/4 = π 1/4 = m.
46 6.18 Supongamos que la caída de presión por unidad de longitud es constante en el cuerpo humano, debido a la forma de bifurcarse los vasos. Si el área total de los capilares es 500 veces mayor que la de la aorta, determina: (a) el número de capilares, (b) la sección de cada uno de ellos, sabiendo que la de la aorta es de 3 cm 2, (c) la velocidad de la sangre en los capilares, teniendo en cuenta que el caudal total es de 5 l/min. (a) Si la caída de presión por unidad de longitud es constante, el área total de n vasos es igual a n por el área del vaso original. Por tanto: n = 500 = n = = (b) La sección de un capilar es el área de la aorta dividida por n: A c = A a n = = cm2. (c) La velocidad de la sangre en la aorta es: v a = Q A a = = 0.28 m/s. La ecuación de continuidad nos permite determinar la velocidad de la sangre en los capilares: v c = Q A c = v a 500 = m/s.
47 6.19 Un corazón bombea 0.08 l de sangre, 60 veces por minuto, con una presión media de 110 mm de Hg. La aorta correspondiente posee un radio de 1.2 cm. Calcula: (a) el caudal sanguíneo, (b) la potencia que ejerce el ventrículo izquierdo, (c) la velocidad de la sangre en la aorta, (d) la resistencia al flujo del sistema circulatorio, (e) la longitud que debería tener un conducto de 1 cm de diámetro para que su resistencia al flujo coincidiera con la del sistema circulatorio. (a) El caudal sanguíneo es el volumen bombeado en cada latido dividido por el período entre latidos: Q = V = T = m3 /s = 4.8 l/min. (b) La potencia es igual al caudal por la presión: P = Qp = = 1.17 W. (c) La velocidad es igual al caudal dividido por la sección: v = Q πr = = 0.18 m/s. 2 π (d) La resistencia al flujo es igual a la diferencia de presiones dividida por el caudal: R f = p 1 p 2 Q = = N s/m 5. (e) Esta longitud efectiva la obtenemos despejando en la expresión de la resistencia al flujo: L = πr4 R f 8η = π = 11 m.
48 6.20 Supongamos un modelo de sistema circulatorio en el que cada vaso se bifurca cada x centímetros en dos iguales, cuyas secciones son igual a la del anterior dividida por 2. Despúes de 15 niveles de división, comienza un proceso inverso de unión. La aorta posee un radio de 0.5 cm, el caudal es de 5 l/min y la presión cardíaca es de 100 mm de Hg. Calcula el valor de x. Las divisiones son tales que la caída de presión por unidad de longitud se mantiene constante. La resistencia al flujo es la misma que tendría un único conducto inicial pero con la longitud total: R f = 8ηx πr4( ) = p 1 p 2 Q Despejando x obtenemos: = x = π = N s/m 5. = 0.32 m.
Hidrostática. agua Hg
Hidrostática 1. Aspirando a fondo, la presión manométrica en los pulmones puede reducirse a 80 mm Hg. Cuál es la altura máxima a la que puede ser sorbida el agua en una pajita? [Solución: 1,09 m ] 2. Un
PROBLEMAS DE FLUIDOS. CURSO 2012-2013
PROBEMAS DE FUIDOS. CURSO 0-03 PROBEMA. Principio de Arquímedes. Un bloque metálico de densidad relativa 7.86 se cuelga de un dinamómetro y se mide su peso. Después se introduce en un recipiente lleno
2 )d = 5 kg x (9,8 m/s 2 + ( ) 2
Solucionario TRABAJO, ENERGIA Y POTENCIA MECANICA 1.- Calcular el trabajo realizado al elevar un cuerpo de 5 kg hasta una altura de 2 m en 3 s. Expresar el resultado en Joule y en erg. Voy a proponer dos
EJEMPLOS DE CUESTIONES DE EVALUACIÓN
EJEMPLOS DE CUESTIONES DE EVALUACIÓN 1. EL MOVIMIENTO Dirección en Internet: http://www.iesaguilarycano.com/dpto/fyq/cine4/index.htm a 1. Determine el desplazamiento total en cada uno de los casos siguientes
TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total.
TRABAJO Y ENERGÍA 1.-/ Un bloque de 20 kg de masa se desplaza sin rozamiento 14 m sobre una superficie horizontal cuando se aplica una fuerza, F, de 250 N. Se pide calcular el trabajo en los siguientes
FLUIDOS IDEALES EN MOVIMIENTO
FLUIDOS IDEALES EN MOVIMIENTO PREGUNTAS 1. En que principio esta basado la ecuación de Bernoulli. 2. La velocidad del agua en una tubería horizontal es de 6 cm. de diámetro, es de 4 m/s y la presión de
Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real
Tema 1. Hidráulica. Generalidades 1. Definición. Propiedades fundamentales de los líquidos 3. Conceptos previos: Peso, Densidad, Peso específico, Presión 4. Compresibilidad de un líquido 5. Tensión superficial
TUBERIAS. Ricardo García San José Ingeniero Industrial (Noviembre 2.000) TUBERIAS
TUBERIAS Ricardo García San José Ingeniero Industrial (Noviembre 2.000) TUBERIAS INDICE 1.- MATERIALES... 3 2.- PERDIDAS DE CARGA... 4 2.1.- FACTORES QUE INFLUYEN EN LAS PERDIDAS DE CARGA... 4 2.2.- REGIMENES
Mecánica de Fluidos y Máquinas Hidráulicas
Mecánica de Fluidos y Máquinas Hidráulicas Tema 06. Flujo de Fluidos en Tuberías Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo
Capítulo 14. El sonido
Capítulo 14 El sonido 1 Ondas sonoras Las ondas sonoras consisten en el movimiento oscilatorio longitudinal de las partículas de un medio. Su velocidad de transmisión es: v = B ρ en donde ρ es la densidad
PROBLEMAS RESUELTOS TEMA: 3
PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado
FISICA DE LOS PROCESOS BIOLOGICOS
FISICA DE LOS PROCESOS BIOLOGICOS BIOELECTROMAGNETISMO 1. Cuál es la carga total, en coulombios, de todos los electrones que hay en 3 moles de átomos de hidrógeno? -289481.4 Coulombios 2. Un átomo de hidrógeno
TALLER DE EFICIENCIA ENERGÉTICA EN SISTEMAS DE BOMBEO DE AGUA DE SERVICIO PÚBLICO MUNICIPAL. M. en I. Ramón Rosas Moya
TALLER DE EFICIENCIA ENERGÉTICA EN SISTEMAS DE BOMBEO DE AGUA DE SERVICIO PÚBLICO MUNICIPAL M. en I. Ramón Rosas Moya CARACTERÍSTICAS HIDRÁULICAS Uno de los aspectos más relevantes a definir con respecto
E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA
Por energía entendemos la capacidad que posee un cuerpo para poder producir cambios en sí mismo o en otros cuerpos. Es una propiedad que asociamos a los cuerpos para poder explicar estos cambios. Ec 1
Mecánica de Fluidos y Máquinas Hidráulicas
Mecánica de Fluidos y Máquinas Hidráulicas Tema 04. Dinámica de Fluidos Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo Licencia:
P cabeza Sca 5 1 0 6 m 2 2 10 6 Pa. beza. 6 m 2 10 8 Pa unta
Pág. 1 16 Ejercemos una fuerza de 10 N sobre un clavo. Si la superficie de su cabeza es de 5 mm y la de la punta 0,1 mm, qué presión se ejercerá al aplicar la fuerza sobre uno u otro de sus extremos? La
2. ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN
. ACTIVIDAD ACADÉMICA CÁLCULO EXPERIMENTAL DE PÉRDIDAS DE CARGA EN CONDUCCIONES A PRESIÓN.1. Introducción.. Descripción de la instalación fluidomecánica.3. Descripción de la actividad práctica.4. Conceptos
TRABAJO Y ENERGÍA - EJERCICIOS
TRABAJO Y ENERGÍA - EJERCICIOS Hallar la energía potencial gravitatoria adquirida por un alpinista de 80 kg que escala una montaña de.00 metros de altura. Epg mgh 0,5 kg 9,8 m / s 0,8 m 3,9 J Su energía
Problemas de Física 1 o Bachillerato
Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte
Capítulo 2 Energía 1
Capítulo 2 Energía 1 Trabajo El trabajo realizado por una fuerza constante sobre una partícula que se mueve en línea recta es: W = F L = F L cos θ siendo L el vector desplazamiento y θ el ángulo entre
Capítulo 6. Aplicaciones de la Integral
Capítulo 6 Aplicaciones de la Integral 6. Introducción. En las aplicaciones que desarrollaremos en este capítulo, utilizaremos una variante de la definición de integral la cual es equivalente a la que
Colegio : Liceo Miguel de Cervantes y Saavedra Dpto. Física (3 ero Medio) Profesor: Héctor Palma A.
Tópico Generativo: La presión en vasos comunicantes. Aprendizajes Esperados: 1.-Aplicar la definir conceptual de presión y aplicarla a vasos comunicante. 2.- Caracterizar la presión en función de la fuerza
NÚCLEO 4 SISTEMA DE CONDUCCIÓN HIDRÁULICA 4.1 CARÁCTERÍSTICAS HIDRÁULICAS DEL SISTEMA
NÚCLEO 4 SISTEMAS DE CONDUCCIÓN HIDRAÚLICA 4.1 CARÁCTERÍSTICAS HIDRÁULICAS DEL SISTEMA La conducción en un sistema de bombeo es uno de los elementos más importantes, ya que su función es precisamente formar
CONTENIDOS MÍNIMOS FÍSICA 4º ESO. - Fórmulas del movimiento rectilíneo uniformemente acelerado y de la caída libre.
CONTENIDOS MÍNIMOS FÍSICA 4º ESO TEMA 1: EL MOVIMIENTO Y SU DESCRIPCIÓN - Definición de movimiento. 2. Magnitudes para describir un movimiento. - Fórmulas de los movimientos rectilíneo y circular. TEMA
(Fig. 43a). La presión en el fondo de la columna izquierda es p + ρgy 1. p + ρgy 1. + ρgy 2. = ρg (y 2. p - p atm. - y 1. = ρgy
3. El medidor de presión más simple es el manómetro de tubo abierto y consiste en lo siguiente: un tubo en forma de U contiene un líquido, comúnmente mercurio o agua; un extremo del tubo se conecta a un
Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA.
Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Actividades Unidad 4. Nos encontramos en el interior de un tren esperando a que comience el viaje. Por la
Módulo 3: Fluidos. Fluidos
Módulo 3: Fluidos 1 Fluidos Qué es un fluido? En Física, un fluido es una sustancia que se deforma continuamente (fluye) bajo la aplicación de una tensión tangencial, por muy pequeña que sea. Es decir,
Agustin Martin Domingo
Mecánica de fluidos. Física y Mecánica de las Construcciones.. Martín. Grupo F. ETSM-UPM 1 1. gua de mar de densidad 1,083 g/cm 3 alcanza en un depósito grande una altura de1,52 m. El depósito contiene
PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.
PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal
NOMBRE:. AREA: FISICA. GRADO:10 FECHA:
NOMBRE:. AREA: FISICA. GRADO:10 FECHA: A.SELECCIONA LA RESPUESTA CORRECTA: 1. las unidades básicas del Sistema Internacional son: a. metro, kilogramo, minutos. b. centímetro, gramo, segundo. c. metro,
Mecánica de Energía. Pérdidas de Energía Total
Mecánica de Energía Pérdidas de Energía Total Fluidos compresibles e incompresibles Los fluidos incompresibles son aquellos en los que el volumen permanece constante independientemente de las fuerzas aplicadas,
PROBLEMAS RESUELTOS. a) Qué ventajas tendría si se desplazase al trabajo en bicicleta en lugar de hacerlo andando?
PROBLEMAS RESUELTOS Una persona, de 34 años de edad y 76 kilos de peso, trabaja en una ciudad en la que hay un desnivel de 29 metros entre su casa y su lugar de trabajo, al que acude andando dos veces
Capítulo 15. Ultrasonidos
Capítulo 15 Ultrasonidos 1 Efecto Doppler El efecto Doppler consiste en el cambio de frecuencia que experimenta una onda cuando el emisor o el receptor se mueven con respecto al medio de propagación. La
5. PÉRDIDAS DE CARGA EN CONDUCTOS CERRADOS O TUBERIAS
5. PÉRIAS E CARGA EN CONUCTOS CERRAOS O TUBERIAS 5. Perfiles de Velocidad: Laminar y Turbulento 5. Radio Hidráulico para Secciones no Circulares 5.3 Pérdidas Primarias y Secundarias 5.4 Ecuación de arcy
CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA ELÉCTRICA
PROGRAMA INTEGRAL DE ASISTENCIA TÉCNICA Y CAPACITACIÓN PARA LA FORMACIÓN DE ESPECIALISTAS EN AHORRO Y USO EFICIENTE DE ENERGÍA ELÉCTRICA DE GUATEMALA CURSO TALLER PROMOTORES DE AHORRO Y EFICIENCIA DE ENERGÍA
Conservación de la Energía Mecánica NOMBRE: CURSO:
NOMBRE: CURSO: La ley de conservación de la energía mecánica nos dice que la energía de un sistema aislado de influencias externas se mantiene siempre constante, lo que ocurre es una simple transformación
TRABAJO Y ENERGÍA. Campos de fuerzas
TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.
Tema 4. Sistemas de partículas
Física I. Curso 2010/11 Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Profs. Alejandro Medina Domínguez y Jesús Ovejero Sánchez Tema 4. Sistemas de partículas Índice 1. Introducción
PRÁCTICA 1 PARTE 1: CAPILARIDAD, VISCOSIDAD, TENSIÓN SUPERFICIAL PARTE 2: MEDIDA DE PRESIONES
PRÁCTICA 1 PARTE 1: CAPILARIDAD, VISCOSIDAD, TENSIÓN SUPERFICIAL PARTE 2: MEDIDA DE PRESIONES 1 de 14 CAPILARIDAD OBJETIVO Comprender el fundamento de la capilaridad. Aplicar la fórmula de Jurin para calcular
GUÍA DE APOYO PARA TRABAJO COEF. 2 SEGUNDO AÑO MEDIO TRABAJO Y ENERGÍA
Liceo N 1 de niñas Javiera Carrera Departamento de Física. Prof.: L. Lastra- M. Ramos. GUÍA DE APOYO PARA TRABAJO COEF. 2 SEGUNDO AÑO MEDIO TRABAJO Y ENERGÍA Estimada alumna la presente guía corresponde
INDICE 3. CALCULO Y DISEÑO DE LAS LINEAS DE REFRIGERANTE 3.1.1. PERDIDA DE PRESION 3.1.2. RETORNO DEL ACEITE AL COMPRESOR 3.1.3.
Cálculo y Diseño de Líneas de Refrigerante INDICE 0. INTRODUCCION 1. PRINCIPIOS BASICOS 2. MATERIAL 3. CALCULO Y DISEÑO DE LAS LINEAS DE REFRIGERANTE 3.1. LINEA DE ASPIRACION 3.1.1. PERDIDA DE PRESION
Capítulo 21 Óptica 1
Capítulo 21 Óptica 1 Reflexión y refracción Las leyes de la reflexión y de la refracción nos dicen lo siguiente: Los rayos incidente, reflejado y transmitido están todos en un mismo plano, perpendicular
TRABAJO Y ENERGIA MECANICA
TRABAJO Y ENERGIA MECANICA 1. Si una persona saca de un pozo una cubeta de 20 [kg] y realiza 6.000 [J] de trabajo, cuál es la profundidad del pozo? (30,6 [m]) 2. Una gota de lluvia (3,35x10-5 [kg] apx.)
La masa es la magnitud física que mide la inercia de los cuerpos: N
Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno
UNIVERSIDAD NACIONAL DE QUILMES AREA BIOTECNOLOGIA BIOPROCESOS II SEMINARIO DE BIOSEPARACIONES
UNIVERSIDAD NACIONAL DE QUILMES AREA BIOTECNOLOGIA BIOPROCESOS II SEMINARIO DE BIOSEPARACIONES 1- Estimar la velocidad de sedimentación de una partícula de 5 µm de diámetro y 1100 K. m -3 de densidad,
Movimiento oscilatorio
Capítulo 13 Ondas 1 Movimiento oscilatorio El movimiento armónico simple ocurre cuando la fuerza recuperadora es proporcional al desplazamiento con respecto del equilibrio x: F = kx k se denomina constante
Facultad de Ingeniería y Arquitectura PROPIEDADES HIDRÁULICAS DE LOS SUELOS
PROPIEDADES HIDRÁULICAS DE LOS SUELOS Capilaridad El proceso de capilaridad es el ascenso que tiene el agua cuando se introduce verticalmente un tubo de vidrio de diámetro pequeño (desde unos milímetros
EJERCICIOS PROPUESTOS DE APLICACIONES DE LA ECUACIÓN DE BERNOULLI
EJERCICIOS PROPUESTOS DE APLICACIONES DE LA ECUACIÓN DE BERNOULLI 1) A través del medidor Venturi de la figura fluye hacia abajo aceite con gravedad específica de 0,90. Si la deflexión del manómetro h
1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J.
El TRABAJO efectuado por una fuerza F se define de la siguiente manera. Como se muestra en la figura, una fuerza F actúa sobre un cuerpo. Este presenta un desplazamiento vectorial s. La componente de F
FÍSICA II : CORRIENTE Y CIRCUITOS ELÉCTRICOS GUÍA DE PROBLEMAS
UNSL ENJPP FÍSICA II : CORRIENTE Y CIRCUITOS ELÉCTRICOS GUÍA DE PROBLEMAS 1. Una plancha eléctrica, con una resistencia de 30,25 Ω, está conectada a una línea eléctrica de 220 V de voltaje. Cuál es la
Capítulo 10. Efectos de superficie. Sistema respiratorio
Capítulo 10 Efectos de superficie. Sistema respiratorio 1 Tensión superficial El coeficiente de tensión superficial γ es la fuerza por unidad de longitud que hay que realizar para aumentar una superficie:
PRESTACIONES EN VEHÍCULOS
LABORATORIO DE TECNOLOGÍAS IV 3º ingeniería Técnica Industrial Mecánica PRESTACIONES EN VEHÍCULOS UNIVERSIDAD CARLOS III DE MADRID DEPARTAMENTO DE INGENIERÍA MECÁNICA LEGANÉS 04 1 INDICE DEL CURSO 1.-
Tema: Fluidos Eje temático: Física. Mecánica - Fluidos Contenido: Leyes de Bernoulli; Roce y velocidad límite; Presión sanguínea.
Tema: Fluidos Eje temático: Física. Mecánica - Fluidos Contenido: Leyes de Bernoulli; Roce y velocidad límite; Presión sanguínea. Hidrodinámica En este capítulo estudiaremos lo que sucede cuando los fluidos
ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año:
(Ejercicios resueltos) Alumno: Curso: Año: La Ley de Ohm La Ley de Ohm dice que la intensidad de corriente que circula a través de un conductor es directamente proporcional a la diferencia de potencial
Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig.
Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA Trabajo realizado por una fuerza. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. N 1), fig N 1 Desde el punto de vista
Algunos son recopilación de cuadernillos de ensayos para PSU.
Ejercicios varios Algunos son recopilación de cuadernillos de ensayos para PSU..- Un vehículo viaja entre dos ciudades por una carretera de largo L. Si recorre el primer tercio de L con rapidez V, luego
EJERCICIOS PARA TERCER CERTAMEN MECÁNICA DE FLUIDOS
EJERCICIOS PR TERCER CERTMEN MECÁNIC DE FUIDOS. En el tubo en U de la figura, se ha llenado la rama de la derecha con mercurio y la de la izquierda con un líquido de densidad desconocida. os niveles definitivos
HIDROSTÁTICA-TENSIÓN SUPERFICIAL
HIDROSTÁTICA-TENSIÓN SUPERFICIAL Los líquidos son sistemas materiales caracterizados por: Su tendencia a fluir si se les aplica un impulso externo. Los movimientos de translación de las moléculas que lo
14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N
Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo
Mecánica de Fluidos Trabajo Práctico # 10 - Capa límite, Flujos desarrollados - Problemas Resueltos
Mecánica de Fluidos Trabajo Práctico # 10 - Capa límite, Flujos desarrollados - Como Proceder: Lea los contenidos de la parte Teórica correspondiente al Módulo 09 y 10, haga un resumen de conceptos y de
3. CÁLCULO HIDRÁULICO
3. CÁLCULO HIDRÁULICO Fig. 3.60- Instalación pag. 3.23 CÁLCULO HIDRÁULICO SELECCIÓN DE DIÁMETRO Y CLASE DE LOS TUBOS DE PRESIÓN La selección del diámetro y clase de presión depende de los siguientes factores:
Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable
Departamento de Física Facultad de Ciencias Universidad de Chile Profesor: Gonzalo Gutiérrez Ayudantes: Uta Naether Felipe González Mecánica I, 2009 Guía 5: Trabajo y Energía Jueves 7 Mayo Tarea: Problemas
SECCION VII APÉNDICE
SECCION VII APÉNDICE A. Física (principios y fórmulas básicas) Apéndice A FÍSICA (PRINCIPIOS Y FÓRMULAS BÁSICAS) I. Introducción A. Las leyes de la Física se expresan mediante relaciones de un nú mero
Ejemplo 2. Velocidad de arrastre en un alambre de cobre
Ejemplo 1 Cual es la velocidad de desplazamiento de los electrones en un alambre de cobre típico de radio 0,815mm que transporta una corriente de 1 A? Si admitimos que existe un electrón libre por átomo
MECANICA DE FLUIDOS PARA BACHILLERATO. Jorge Parra Vargas cod 20012135001 Jaime Niño Rocha cod 20012135023. Introducción
MECANICA DE FLUIDOS PARA BACHILLERATO Jorge Parra Vargas cod 20012135001 Jaime Niño Rocha cod 20012135023 Introducción Una tendencia en nuestro país es la de enseñar física en cursos de educación básica.
Tema 1. Movimiento de una Partícula
Tema 1. Movimiento de una Partícula CONTENIDOS Rapidez media, velocidad media, velocidad instantánea y velocidad constante. Velocidades relativas sobre una línea recta (paralelas y colineales) Movimiento
Hidrodinámica en la Medicina Flujo de Fluidos en el Cuerpo Practica
Hidrodinámica en la Medicina Flujo de Fluidos en el Cuerpo Practica Dr. Willy H. Gerber Instituto de Ciencias Físicas y Matemáticas Facultad de Ciencias Universidad Austral de Chile Valdivia, Chile 1 Fuente
VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10
VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10 Instrucciones: Al final de este examen se encuentra la hoja de respuestas que deberá contestar. o ponga su nombre en ninguna de las hojas, escriba
razón de 9 m 3 /min, como se muestra en la es de 1 Kf/cm 2. Cuál es la presión en el punto que en a?
9.6 PROBLEMS RESUELTOS DE HIDRODINÁMIC.- Considérese una manguera de sección circular de diámetro interior de,0 cm, por la que fluye agua a una tasa de 0,5 litros por cada segundo. Cuál es la velocidad
Introdución a la capa límite laminar bidimensional y estacionaria
Introdución a la capa límite laminar bidimensional y estacionaria M. Rodríguez 1 Introducción En los movimientos a altos números de Reynolds (basado en la longitud característica del movimiento), los efectos
IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?
IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento
Calibración del termómetro
Calibración del termómetro RESUMEN En esta práctica construimos un instrumento el cual fuera capaz de relacionar la temperatura con la distancia, es decir, diseñamos un termómetro de alcohol, agua y gas
PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA.
PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA. Con unos costos de la energía en aumento y con unas limitaciones cada vez mayores a la emisión de gases de efecto invernadero, el diseño de equipos e instalaciones
INTERCAMBIADORES DE CALOR
1 OBJETO: INTERCAMBIADORES DE CALOR Estudio del comportamiento de un cambiador de calor de carcasa y tubos. Determinación de su coeficiente global de transmisión de calor, DMLT, F, eficiencia, NUT, y pérdidas
Guía 7 4 de mayo 2006
Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 7 4 de mayo 2006 Conservación de la energía mecánica
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE VACIADO DE TANQUES
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE VACIADO DE TANQUES Mucos problemas físicos dependen de alguna manera de la geometría. Uno de ellos es la salida de
2. V F El momento cinético (o angular) de una partícula P respecto de un punto O se expresa mediante L O = OP m v
FONAMENTS FÍSICS ENGINYERIA AERONÀUTICA SEGONA AVALUACIÓ TEORIA TEST (30 %) 9-juny-2005 COGNOMS: NOM: DNI: PERM: 1 Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo
APUNTES DE FÍSICA Y QUÍMICA
Departamento de Física y Química I.E.S. La Arboleda APUNTES DE FÍSICA Y QUÍMICA 1º de Bachillerato Volumen II. Física Unidad VII TRABAJO Y ENERGÍA Física y Química 1º de Bachillerato 1.- CONCEPTO DE ENERGÍA
Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir:
Problemas resueltos Problema 1. Un motor de c.c (excitado según el circuito del dibujo) tiene una tensión en bornes de 230 v., si la fuerza contraelectromotriz generada en el inducido es de 224 v. y absorbe
Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i
Trabajo y Energía Trabajo vo xo=m vo xo W = FO. xo FO: Fuerza aplicada, XOes el desplazamiento. Usando la Segunda Ley de Newton: W = m t t =mvo. vo= ( 1 2 m vo2 )= K, Teorema del Trabajo y la Energía K
Medición de la aceleración de la gravedad mediante plano inclinado
Medición de la aceleración de la gravedad mediante plano inclinado Lopez, Johanna Giselle (gyf_lola@hotmail.com) Martinez Roldan, Antu (antucolomenos@hotmail.com) Viglezzi, Ramiro (ramiro.viglezzi@gmail.com)
FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA
PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida
Tema 14. Conducciones abiertas. Canales.
Tema 14. Conducciones abiertas. Canales. 1. Introducción.. Ecuación general en régimen permanente.. Fórmulas prácticas para la determinación de pérdida de carga. 4. Velocidades admisibles. Distribución
EJERCICIOS DE HIDROSTÁTICA. 4º E.S.O.
EJERCICIOS DE HIDROSTÁTICA. 4º E.S.O. La finalidad de esta colección de ejercicios resueltos consiste en que sepáis resolver las diferentes situaciones que se nos plantea en el problema. Para ello seguiremos
Capítulo 5. El estudio de la hidráulica industrial comenzó a finales del siglo XVII cuando
Capítulo 5 Sistema Hidráulico Hidráulica significa la creación de fuerzas y movimientos mediante fluidos sometidos a presión. Los fluidos sometidos a presión son el medio para la transmisión de energía.
Capítulo 1. Mecánica
Capítulo 1 Mecánica 1 Velocidad El vector de posición está especificado por tres componentes: r = x î + y ĵ + z k Decimos que x, y y z son las coordenadas de la partícula. La velocidad es la derivada temporal
Tema 10 Métodos de control de emisiones II
Tema 10 Métodos de control de emisiones II 10.1 Control de emisión de primarias De dos tipos: 10.1 Control de emisión de primarias: 10.1.1 Colectores de pared 10.1.2 Colectores por división Arrastrar las
Examen de TEORIA DE MAQUINAS Junio 95 Nombre...
Examen de TEORIA DE MAQUINAS Junio 95 Nombre... El sistema de la figura es un modelo simplificado de un vehículo y se encuentra sometido a la acción de la gravedad. Sus características son: masa m=10 Kg,
D 2 8 2 cm 2 F SALIDA = p = 6 Kp/cm 2 3,14 = 301, 44 Kp 4 4. b) ( D 2 - d 2 ) V CILINDRO = V RETROCESO + V AVANCE V RETROCESO = C 4 D 2 V AVANCE = C 4
1.- En una cierta instalación neumática se dispone de un cilindro de doble efecto cuyos datos son los siguientes: - Diámetro interior = 80 mm. - Carrera = 1000 mm. - Diámetro del vástago = 30 mm. - Carreras
Capítulo 6 PROCESOS DE TRANSPORTE: DIFUSIÓN Y ÓSMOSIS
Capítulo 6 PROCESOS DE TRANSPORTE: DIFUSIÓN Y ÓSMOSIS 6.1 Flujo y movimiento de difusión 6.2 Leyes de Fick 6.3 Ósmosis y presión osmótica 6.4 Intercambio transcapilar de sustancias 1 Introducción Los fenómenos
UNIVERSIDAD NACIONAL AUTONOMA de HONDURAS del VALLE DE SULA. Asignatura: Mecánica de Fluidos. Catedrático: Ing. Covadonga Álvarez.
UNIVERSIDAD NACIONAL AUTONOMA de HONDURAS del VALLE DE SULA Asignatura: Mecánica de Fluidos Catedrático: Ing. Covadonga Álvarez Tema: Laboratorio de Venturi & Circuito Hidráulico de Perdidas Primarias
CAPÍTULO SIETE. HIDROSTÁTICA E HIDRODINÁMICA
CAPÍTULO SIETE. HIDROSTÁTICA E HIDRODINÁMICA Los fluidos son sustancias que se pueden escurrir o fluir, mediante una aplicación apropiada de fuerzas. En términos generales podemos clasificar los fluidos
Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)
CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su
6 Energía mecánica y trabajo
6 Energía mecánica y trabajo EJERCICIOS PROPUESTOS 6.1 Indica tres ejemplos de sistemas o cuerpos de la vida cotidiana que tengan energía asociada al movimiento. Una persona que camina, un automóvil que
PRINCIPIOS DE MÁQUINAS Y MOTORES DE C.C. Y C.A.
PRINCIPIOS DE MÁQUINAS Y MOTORES DE C.C. Y C.A. En la industria se utilizan diversidad de máquinas con la finalidad de transformar o adaptar una energía, no obstante, todas ellas cumplen los siguientes
TEMA II.3. Tensión superficial. Dr. Juan Pablo Torres-Papaqui
TEMA II.3 Tensión superficial Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus Guanajuato,
Objetivos específicos:
Universidad Nacional Experimental del Tácira Departamento de Ingeniería Mecánica Núcleo de Termofluidos Asignatura: Laboratorio de Mecánica de Fluidos Código: 011 L Carrera: Ingeniería Mecánica Profesor:
Capa Límite Superficial
Capa ímite Superficial Física Ambiental. ema 6. ema6. FA (prof. RAMOS 1 ema 6.- Capa ímite Superficial. Capa límite: justificación. Flujos laminar y turbulento, características físicas: números de Reynolds.
FUERZA. POTENCIA Definición Es el trabajo realizado en la unidad de tiempo (t) P = W / t
CONCEPTOS BÁSICOS FUERZA Definición Es toda causa capaz de producir o modificar el estado de reposo o de movimiento de un cuerpo o de provocarle una deformación Unidad de medida La unidad de medida en
FUERZA CENTRIPETA Y CENTRIFUGA. De acuerdo con la segunda ley de Newton =
FUEZA CENTIPETA Y CENTIFUGA. De acuerdo con la segunda ley de Newton = F m a para que un cuerpo pesa una aceleración debe actuar permanentemente sobre el una fuerza resultante y la aceleración tiene el